Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(12): 6733-6747, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828787

ABSTRACT

Adenosine Deaminases Acting on RNA (ADARs) are enzymes that catalyze the conversion of adenosine to inosine in RNA duplexes. These enzymes can be harnessed to correct disease-causing G-to-A mutations in the transcriptome because inosine is translated as guanosine. Guide RNAs (gRNAs) can be used to direct the ADAR reaction to specific sites. Chemical modification of ADAR guide strands is required to facilitate delivery, increase metabolic stability, and increase the efficiency and selectivity of the editing reaction. Here, we show the ADAR reaction is highly sensitive to ribose modifications (e.g. 4'-C-methylation and Locked Nucleic Acid (LNA) substitution) at specific positions within the guide strand. Our studies were enabled by the synthesis of RNA containing a new, ribose-modified nucleoside analog (4'-C-methyladenosine). Importantly, the ADAR reaction is potently inhibited by LNA or 4'-C-methylation at different positions in the ADAR guide. While LNA at guide strand positions -1 and -2 block the ADAR reaction, 4'-C-methylation only inhibits at the -2 position. These effects are rationalized using high-resolution structures of ADAR-RNA complexes. This work sheds additional light on the mechanism of ADAR deamination and aids in the design of highly selective ADAR guide strands for therapeutic editing using chemically modified RNA.


Subject(s)
Adenosine Deaminase , RNA Editing , Ribose , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/chemistry , Ribose/chemistry , Ribose/metabolism , Humans , Oligonucleotides/chemistry , Oligonucleotides/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/chemistry , Nucleosides/chemistry , Nucleosides/metabolism , RNA/metabolism , RNA/chemistry , Inosine/metabolism , Inosine/chemistry
2.
RSC Chem Biol ; 4(1): 74-83, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36685257

ABSTRACT

Adenosine deaminases that act on RNA (ADARs) can be directed to predetermined sites in transcriptomes by forming duplex structures with exogenously delivered guide RNAs (gRNAs). They can then catalyze the hydrolytic deamination of adenosine to inosine in double stranded RNA, which is read as guanosine during translation. High resolution structures of ADAR2-RNA complexes revealed a unique conformation for the nucleotide in the guide strand base paired to the editing site's 5' nearest neighbor (-1 position). Here we describe the effect of 16 different nucleoside analogs at this position in a gRNA that targets a 5'-UA̲-3' site. We found that several analogs increase editing efficiency for both catalytically active human ADARs. In particular, 2'-deoxynebularine (dN) increased the ADAR1 and ADAR2 in vitro deamination rates when at the -1 position of gRNAs targeting the human MECP2 W104X site, the mouse IDUA W392X site, and a site in the 3'-UTR of human ACTB. Furthermore, a locked nucleic acid (LNA) modification at the -1 position was found to eliminate editing. When placed -1 to a bystander editing site in the MECP2 W104X sequence, bystander editing was eliminated while maintaining on-target editing. In vitro trends for four -1 nucleoside analogs were validated by directed editing of the MECP2 W104X site expressed on a reporter transcript in human cells. This work demonstrates the importance of the -1 position of the gRNA to ADAR editing and discloses nucleoside analogs for this site that modulate ADAR editing efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...