Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pregnancy Childbirth ; 24(1): 136, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355457

ABSTRACT

BACKGROUND: While the effectiveness of cardiotocography in reducing neonatal morbidity is still debated, it remains the primary method for assessing fetal well-being during labor. Evaluating how accurately professionals interpret cardiotocography signals is essential for its effective use. The objective was to evaluate the accuracy of fetal hypoxia prediction by practitioners through the interpretation of cardiotocography signals and clinical variables during labor. MATERIAL AND METHODS: We conducted a cross-sectional online survey, involving 120 obstetric healthcare providers from several countries. One hundred cases, including fifty cases of fetal hypoxia, were randomly assigned to participants who were invited to predict the fetal outcome (binary criterion of pH with a threshold of 7.15) based on the cardiotocography signals and clinical variables. After describing the participants, we calculated (with a 95% confidence interval) the success rate, sensitivity and specificity to predict the fetal outcome for the whole population and according to pH ranges, professional groups and number of years of experience. Interobserver agreement and reliability were evaluated using the proportion of agreement and Cohen's kappa respectively. RESULTS: The overall ability to predict a pH level below 7.15 yielded a success rate of 0.58 (95% CI 0.56-0.60), a sensitivity of 0.58 (95% CI 0.56-0.60) and a specificity of 0.63 (95% CI 0.61-0.65). No significant difference in the success rates was observed with respect to profession and number of years of experience. The success rate was higher for the cases with a pH level below 7.05 (0.69) and above 7.20 (0.66) compared to those falling between 7.05 and 7.20 (0.48). The proportion of agreement between participants was good (0.82), with an overall kappa coefficient indicating substantial reliability (0.63). CONCLUSIONS: The use of an online tool enabled us to collect a large amount of data to analyze how practitioners interpret cardiotocography data during labor. Despite a good level of agreement and reliability among practitioners, the overall accuracy is poor, particularly for cases with a neonatal pH between 7.05 and 7.20. Factors such as profession and experience level do not present notable impact on the accuracy of the annotations. The implementation and use of a computerized cardiotocography analysis software has the potential to enhance the accuracy to detect fetal hypoxia, especially for ambiguous cardiotocography tracings.


Subject(s)
Cardiotocography , Fetal Hypoxia , Pregnancy , Infant, Newborn , Female , Humans , Cardiotocography/methods , Fetal Hypoxia/diagnosis , Observer Variation , Reproducibility of Results , Cross-Sectional Studies , Heart Rate, Fetal
2.
Front Pediatr ; 11: 1190441, 2023.
Article in English | MEDLINE | ID: mdl-37397139

ABSTRACT

Introduction: Cardiotocography, which consists in monitoring the fetal heart rate as well as uterine activity, is widely used in clinical practice to assess fetal wellbeing during labor and delivery in order to detect fetal hypoxia and intervene before permanent damage to the fetus. We present DeepCTG® 1.0, a model able to predict fetal acidosis from the cardiotocography signals. Materials and methods: DeepCTG® 1.0 is based on a logistic regression model fed with four features extracted from the last available 30 min segment of cardiotocography signals: the minimum and maximum values of the fetal heart rate baseline, and the area covered by accelerations and decelerations. Those four features have been selected among a larger set of 25 features. The model has been trained and evaluated on three datasets: the open CTU-UHB dataset, the SPaM dataset and a dataset built in hospital Beaujon (Clichy, France). Its performance has been compared with other published models and with nine obstetricians who have annotated the CTU-UHB cases. We have also evaluated the impact of two key factors on the performance of the model: the inclusion of cesareans in the datasets and the length of the cardiotocography segment used to compute the features fed to the model. Results: The AUC of the model is 0.74 on the CTU-UHB and Beaujon datasets, and between 0.77 and 0.87 on the SPaM dataset. It achieves a much lower false positive rate (12% vs. 25%) than the most frequent annotation among the nine obstetricians for the same sensitivity (45%). The performance of the model is slightly lower on the cesarean cases only (AUC = 0.74 vs. 0.76) and feeding the model with shorter CTG segments leads to a significant decrease in its performance (AUC = 0.68 with 10 min segments). Discussion: Although being relatively simple, DeepCTG® 1.0 reaches a good performance: it compares very favorably to clinical practice and performs slightly better than other published models based on similar approaches. It has the important characteristic of being interpretable, as the four features it is based on are known and understood by practitioners. The model could be improved further by integrating maternofetal clinical factors, using more advanced machine learning or deep learning approaches and having a more robust evaluation of the model based on a larger dataset with more pathological cases and covering more maternity centers.

3.
Acta Obstet Gynecol Scand ; 102(2): 130-137, 2023 02.
Article in English | MEDLINE | ID: mdl-36541016

ABSTRACT

Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer-aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state-of-the-art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice.


Subject(s)
Fetal Hypoxia , Labor, Obstetric , Pregnancy , Female , Humans , Fetal Hypoxia/diagnosis , Cardiotocography/methods , Retrospective Studies , Prenatal Care , Heart Rate, Fetal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...