Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 11(10): 930, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122623

ABSTRACT

RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , GTP Phosphohydrolases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , ral GTP-Binding Proteins/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/administration & dosage , Colorectal Neoplasms/genetics , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Recombinant Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/administration & dosage , Transfection , ral GTP-Binding Proteins/antagonists & inhibitors , ral GTP-Binding Proteins/biosynthesis , ral GTP-Binding Proteins/genetics
2.
Soft Matter ; 14(44): 9005-9011, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30376031

ABSTRACT

This study introduces cylindrical nematic liquid crystal (LC) shells. Shells as confinement can provide soft matter with intriguing topology and geometry. Indeed, in spherical shells of LCs, rich defect structures have been reported. Avoiding the inherent Plateau-Rayleigh instability of cylindrical liquid-liquid interfaces, we realize the cylindrical nematic LC shell by two different methods: the phase separation in the nematic-isotropic coexistence phase and a cylindrical cavity with a glass rod suspended in the middle. Specifically, the director configurations of lyotropic chromonic LCs (LCLCs) in the cylindrical shell and their energetics are investigated theoretically and experimentally. Unusual elastic properties of LCLCs, i.e., a large saddle-splay modulus, and a shell geometry with both concave and convex curvatures, result in a double-twist director configuration.

3.
Am J Pathol ; 188(9): 1936-1948, 2018 09.
Article in English | MEDLINE | ID: mdl-30028958

ABSTRACT

Colorectal cancer (CRC) diagnosis and prognostic stratification are based on histopathologic assessment of cell or nuclear pleomorphism, aberrant mitotic figures, altered glandular architecture, and other phenomic abnormalities. This complexity is driven by oncogenic perturbation of tightly coordinated spatiotemporal signaling to disrupt multiple scales of tissue organization. This review clarifies molecular and cellular mechanisms underlying common CRC histologic features and helps understand how the CRC genome controls core aspects of tumor aggressiveness. It further explores a spatiotemporal framework for CRC phenomics based on regulation of living cells in fundamental and organotypic model systems. The review also discusses tissue homeostasis, considers distinct classes of oncogenic perturbations, and evolution of cellular or multicellular cancer phenotypes. It further explores the molecular controls of cribriform, micropapillary, and high-grade CRC morphology in organotypic culture models and assesses relevant translational studies. In addition, the review delves into complexities of morphologic plasticity whereby a single molecular signature generates heterogeneous cancer phenotypes, and, conversely, morphologically homogeneous tumors show substantive molecular diversity. Principles outlined may aid mechanistic interpretation of omics data in a setting of cancer pathology, provide insight into CRC consensus molecular subtypes, and better define principles for CRC prognostic stratification.


Subject(s)
Colorectal Neoplasms/pathology , Disease Models, Animal , Organ Culture Techniques/methods , Animals , Humans
4.
J Pathol ; 244(4): 445-459, 2018 04.
Article in English | MEDLINE | ID: mdl-29520890

ABSTRACT

Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Centrosome/enzymology , Colorectal Neoplasms/enzymology , Interphase , Protein Kinase C/metabolism , Caco-2 Cells , Cell Proliferation , Cell Shape , Chromosomal Instability , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Humans , Neoplasm Grading , Phenotype , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Kinase C/genetics , Signal Transduction , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
5.
Mol Cancer Ther ; 17(6): 1280-1290, 2018 06.
Article in English | MEDLINE | ID: mdl-29483217

ABSTRACT

BRAFV600E mutations occur in ∼10% of colorectal cancer cases, are associated with poor survival, and have limited responses to BRAF/MEK inhibition with or without EGFR inhibition. There is an unmet need to understand the biology of poor prognostic BRAFMT colorectal cancer. We have used differential gene expression and pathway analyses of untreated stage II and stage III BRAFMT (discovery set: n = 31; validation set: n = 26) colorectal cancer, and an siRNA screen to characterize the biology underpinning the BRAFMT subgroup with poorest outcome. These analyses identified the unfolded protein response (UPR) as a novel and druggable pathway associated with the BRAFMT colorectal cancer subgroup with poorest outcome. We also found that oncogenic BRAF drives endoplasmic reticulum (ER) stress and UPR pathway activation through MEK/ERK. Furthermore, inhibition of GRP78, the master regulator of the UPR, using siRNA or small molecule inhibition, resulted in acute ER stress and apoptosis, in particular in BRAFMT colorectal cancer cells. In addition, dual targeting of protein degradation using combined Carfilzomib (proteasome inhibitor) and ACY-1215 (HDAC6-selective inhibitor) treatment resulted in marked accumulation of protein aggregates, acute ER stress, apoptosis, and therapeutic efficacy in BRAFMT in vitro and xenograft models. Mechanistically, we found that the apoptosis following combined Carfilzomib/ACY-1215 treatment is mediated through increased CHOP expression. Taken together, our findings indicate that oncogenic BRAF induces chronic ER stress and that inducers of acute ER stress could be a novel treatment strategy for poor prognostic BRAFMT colorectal cancer. Mol Cancer Ther; 17(6); 1280-90. ©2018 AACR.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Unfolded Protein Response/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Hydroxamic Acids/pharmacology , MAP Kinase Signaling System , Models, Biological , Oligopeptides/pharmacology , Prognosis , Protein Biosynthesis , Proto-Oncogene Proteins B-raf/metabolism , Pyrimidines/pharmacology , Signal Transduction/drug effects , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
6.
Elife ; 62017 07 27.
Article in English | MEDLINE | ID: mdl-28749339

ABSTRACT

PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein ß-Arrestin1. Because ß-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a ß-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs ß-Arrestin1 membrane localization, ß-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by ß-Arrestin1 KD or inhibition of ß-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of ß-Arrestin1, ARHGAP21 and Cdc42.


Subject(s)
Cell Membrane/metabolism , GTPase-Activating Proteins/genetics , Organoids/metabolism , PTEN Phosphohydrolase/genetics , Spindle Apparatus/metabolism , beta-Arrestin 1/genetics , Animals , Binding Sites , Caco-2 Cells , Cell Membrane/ultrastructure , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , HCT116 Cells , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/ultrastructure , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Spindle Apparatus/ultrastructure , Tissue Culture Techniques , beta-Arrestin 1/antagonists & inhibitors , beta-Arrestin 1/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
7.
Oncotarget ; 7(31): 49042-49064, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27119498

ABSTRACT

Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.


Subject(s)
Adenocarcinoma/pathology , Cholecalciferol/pharmacology , Colon/pathology , Colorectal Neoplasms/pathology , Adenocarcinoma/drug therapy , Animals , Caco-2 Cells , Cell Culture Techniques , Cell Transformation, Neoplastic , Cohort Studies , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Mitosis , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prognosis , Protein Kinase C/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction , Transfection , cdc42 GTP-Binding Protein/metabolism
8.
Clin Cancer Res ; 21(14): 3230-3240, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25813020

ABSTRACT

PURPOSE: Activating mutations in the BRAF oncogene are found in 8% to 15% of colorectal cancer patients and have been associated with poor survival. In contrast with BRAF-mutant (MT) melanoma, inhibition of the MAPK pathway is ineffective in the majority of BRAFMT colorectal cancer patients. Therefore, identification of novel therapies for BRAFMT colorectal cancer is urgently needed. EXPERIMENTAL DESIGN: BRAFMT and wild-type (WT) colorectal cancer models were assessed in vitro and in vivo. Small-molecule inhibitors of MEK1/2, MET, and HDAC were used, overexpression and siRNA approaches were applied, and cell death was assessed by flow cytometry, Western blotting, cell viability, and caspase activity assays. RESULTS: Increased c-MET-STAT3 signaling was identified as a novel adaptive resistance mechanism to MEK inhibitors (MEKi) in BRAFMT colorectal cancer models in vitro and in vivo. Moreover, MEKi treatment resulted in acute increases in transcription of the endogenous caspase-8 inhibitor c-FLIPL in BRAFMT cells, but not in BRAFWT cells, and inhibition of STAT3 activity abrogated MEKi-induced c-FLIPL expression. In addition, treatment with c-FLIP-specific siRNA or HDAC inhibitors abrogated MEKi-induced upregulation of c-FLIPL expression and resulted in significant increases in MEKi-induced cell death in BRAFMT colorectal cancer cells. Notably, combined HDAC inhibitor/MEKi treatment resulted in dramatically attenuated tumor growth in BRAFMT xenografts. CONCLUSIONS: Our findings indicate that c-MET/STAT3-dependent upregulation of c-FLIPL expression is an important escape mechanism following MEKi treatment in BRAFMT colorectal cancer. Thus, combinations of MEKi with inhibitors of c-MET or c-FLIP (e.g., HDAC inhibitors) could be potential novel treatment strategies for BRAFMT colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , Colorectal Neoplasms/metabolism , Histone Deacetylase Inhibitors/pharmacology , Signal Transduction/drug effects , Animals , Blotting, Western , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , MAP Kinase Kinase Kinases , Mice , Mice, Inbred BALB C , Mice, Nude , Proto-Oncogene Proteins B-raf/genetics , RNA, Small Interfering , Transfection , Xenograft Model Antitumor Assays
9.
Sci Rep ; 3: 1412, 2013.
Article in English | MEDLINE | ID: mdl-23475181

ABSTRACT

We investigate capillary pumping in microchannels both experimentally and numerically. Putting two droplets of different sizes at the in/outlet of a microchannel, there will in general be a flow from the smaller droplet to the larger one due to the Laplace pressure difference. We show that an unusual flow from a larger droplet into a smaller one is possible by manipulating the wetting properties, notably the contact line pinning. In addition, we propose a way to actively control the flow by electrowetting.

10.
Indian J Virol ; 23(3): 303-10, 2012 Dec.
Article in English | MEDLINE | ID: mdl-24293817

ABSTRACT

The 50 % tissue culture infectious dose (TCID50) is still one of the most commonly used techniques for estimating virus titers. However, the traditional TCID50 assay is time consuming, susceptible to subjective errors and generates only quantal data. Here, we describe a colorimetric-based approach for the titration of Enterovirus 71 (EV71) using a modified method for making virus dilutions. In summary, the titration of EV71 using MTT or MTS staining with a modified virus dilution method decreased the time of the assay and eliminated the subjectivity of observational results, improving accuracy, reproducibility and reliability of virus titration, in comparison with the conventional TCID50 approach (p < 0.01). In addition, the results provided evidence that there was better correlation between a plaquing assay and our approach when compared to the traditional TCID50 approach. This increased accuracy also improved the ability to predict the number of virus plaque forming units present in a solution. These improvements could be of use for any virological experimentation, where a quick accurate titration of a virus capable of causing cell destruction is required or a sensible estimation of the number of viral plaques based on TCID50 of a virus is desired.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056327, 2011 May.
Article in English | MEDLINE | ID: mdl-21728667

ABSTRACT

We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (elastic and gravitational) are observed for the foam. Hair gel coiling, on the other hand, is more like the coiling of a liquid system; here we observe viscous and gravitational regimes. No inertial regime is observed for either system because of instabilities occurring at high flow rates or the breakup of the filament from large heights.

SELECTION OF CITATIONS
SEARCH DETAIL
...