Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 20(1): 163, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549943

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS), the most prevalent inherited intellectual disability and one of the most common monogenic forms of autism, is caused by a loss of fragile X messenger ribonucleoprotein 1 (FMR1). We have previously shown that FMR1 represses the levels and activities of ubiquitin ligase MDM2 in young adult FMR1-deficient mice, and treatment by a MDM2 inhibitor Nutlin-3 rescues both hippocampal neurogenic and cognitive deficits in FMR1-deficient mice when analyzed shortly after the administration. However, it is unknown whether Nutlin-3 treatment can have long-lasting therapeutic effects. METHODS: We treated 2-month-old young adult FMR1-deficient mice with Nutlin-3 for 10 days and then assessed the persistent effect of Nutlin-3 on both cognitive functions and adult neurogenesis when mice were 6-month-old mature adults. To investigate the mechanisms underlying the persistent effects of Nutlin-3, we analyzed the proliferation and differentiation of neural stem/progenitor cells isolated from these mice and assessed the transcriptome of the hippocampal tissues of treated mice. RESULTS: We found that transient treatment with Nutlin-3 of 2-month-old young adult FMR1-deficient mice prevents the emergence of neurogenic and cognitive deficits in mature adult FXS mice at 6 months of age. We further found that the long-lasting restoration of neurogenesis and cognitive function might not be mediated by changing intrinsic properties of adult neural stem cells. Transcriptomic analysis of the hippocampal tissue demonstrated that transient Nultin-3 treatment leads to significant expression changes in genes related to the extracellular matrix, secreted factors, and cell membrane proteins in the FMR1-deficient hippocampus. CONCLUSIONS: Our data indicates that transient Nutlin-3 treatment in young adults leads to long-lasting neurogenic and behavioral changes likely through modulating adult neurogenic niche that impact adult neural stem cells. Our results demonstrate that cognitive impairments in FXS may be prevented by an early intervention through Nutlin-3 treatment.


Subject(s)
Cognitive Dysfunction , Fragile X Syndrome , Animals , Cognition , Cognitive Dysfunction/drug therapy , Crisis Intervention , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Hippocampus/metabolism , Imidazoles , Mice , Mice, Knockout , Neurogenesis , Piperazines
3.
Cell Rep ; 32(5): 107997, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32755589

ABSTRACT

Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases. We identify the regulator of G protein signaling 6 (RGS6) as a key factor that mediates running impact on adult-born neurons. RGS6 overexpression mimics the positive effects of voluntary running on morphological and physiological maturation of adult new neurons and reduced sensitivity of adult-born neurons to the inhibitory effect of GABAB (γ-Aminobutyric acid B) receptor activation. Knocking down RGS6 abolishes running-enhanced neuronal maturation and hippocampal neurogenesis-dependent learning and anxiolytic effect. Our study provides a data resource showing genome-wide intrinsic molecular changes in adult-born hippocampal neurons that contribute to voluntary running-induced neurogenesis.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Neurogenesis , Physical Conditioning, Animal , RGS Proteins/metabolism , Animals , Anxiety/physiopathology , Cell Differentiation , Gene Expression Regulation , Humans , Memory , Mice, Inbred C57BL , Neurogenesis/genetics , Neurons/metabolism , RGS Proteins/genetics , Receptors, GABA-B/metabolism
4.
Neuropharmacology ; 145(Pt A): 123-130, 2019 02.
Article in English | MEDLINE | ID: mdl-30391731

ABSTRACT

Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1+) and astrocytic, glial fibrillary acidic protein (GFAP+) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Central Nervous System Agents/pharmacology , Culture Media, Conditioned/pharmacology , Muscle Fibers, Skeletal/metabolism , Neural Stem Cells/drug effects , Ribonucleotides/pharmacology , Adenylate Kinase/metabolism , Aminoimidazole Carboxamide/pharmacology , Animals , Cells, Cultured , Dentate Gyrus/drug effects , Dentate Gyrus/physiology , Doublecortin Protein , Male , Mice, Inbred C57BL , Motor Activity/physiology , Muscle Fibers, Skeletal/drug effects , Neural Stem Cells/physiology , Neurogenesis/drug effects , Neurons/drug effects , Neurons/physiology , Proteome , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...