Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 189-205, 2024 01.
Article in English | MEDLINE | ID: mdl-37401968

ABSTRACT

This work is aimed at studying the drug delivery applications of iron oxide (Fe3O4) nanoparticles with strontium (Sr) doping with varying molar ratios prepared by the co-precipitation route. The impact of increased strontium content on the particle size and magnetic properties was investigated. The impending of these nanoparticles for drug loading, drug release, and their respective cytotoxicity was also inspected.First, iron oxide nanoparticles were doped with various amounts of strontium, from 0.25, 0.50, and 0.75, to 1 mol using co-precipitation method. These synthesized nanoparticles were characterized by XRD, SEM, EDX, VSM, and FTIR for evaluating crystal structure, phase purity, morphology, composition, magnetic properties, and functional groups, respectively. Drug loading and drug release properties were determined using UV-vis spectroscopy, whereas MTT assay evaluated cytotoxicity. Colloidal stability was assessed using zeta potential in PBS solution.The findings confirmed the successful doping of iron oxide with strontium via XRD and EDX. SEM results confirmed spherical morphology for all and needle-like structure for 1 mol strontium doped sample. For VSM results, a single domain structure was established. It was also observed that the drug encapsulation efficiency increases with increased strontium content. Cytotoxicity results by MTT assay revealed increased cytotoxicity with increasing nanoparticle concentration, and ibuprofen-loaded nanoparticles showed higher cytotoxicity than un-loaded nanoparticles at the same concentration. Zeta potential results showed colloidal stability of iron oxide nanoparticles increased by the addition of strontium.This study provided predominantly comparison of the cytotoxicity of ibuprofen-loaded and non-loaded nanoparticles on Hep-2 cancer cells at similar concentrations for the first time for both Fe3O4 particles and Sr-doped Fe3O4 nanoparticles and enclosed the impact of increasing Sr doping content on Fe3O4 nanoparticles.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Ibuprofen , Magnetite Nanoparticles/chemistry , Drug Delivery Systems , Ferric Compounds/chemistry , Nanoparticles/chemistry
2.
ACS Omega ; 8(38): 34760-34767, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779992

ABSTRACT

In the present work, Mg1-xZnxFe2O4 (MZFO) nanoparticles with x = 0.0, 0.2, 0.35, and 0.5 were synthesized via a chemical coprecipitation method. The study aimed to explore the effect of substituting Mg with Zn in MZFO on its structural, dielectric, and gas-sensing properties. The spinel phase formation was confirmed using X-ray diffraction, and the morphology of the prepared nanoparticles was revealed using scanning electron microscopy. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the band ranges of 500-600 cm-1 for tetrahedral and 390-450 cm-1 for octahedral lattice sites. The dielectric data showed that Zn substitution in MZFO decreased both the dielectric constant and loss with increasing frequencies and attained a stagnant value at higher frequencies. Furthermore, the gas-sensing characteristics of Zn-substituted spinel ferrites at room temperature for CO2, O2, and N2 were studied. The nanostructured MZFO exhibited high sensitivity in the order of CO2 > O2 ≫ N2 and showed a good response time of (∼1 min) for CO2, demonstrating that MZFO can be a good potential candidate for gas-sensing applications.

3.
ACS Omega ; 5(23): 13694-13702, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566834

ABSTRACT

To overcome the inherent weakness of polylactic acid (PLA), used as scaffolding materials, multiple samples of Mg/PLA alloy composite materials was made by plastic injection molding. To enhance the interfacial interaction with PLA, magnesium alloy was treated with microarc oxidation (MAO) at four different frequencies, resulting in an improvement in mechanical strength and toughness. The microarc oxidation films consisted mainly of a porous MgO ceramic layer on the Mg rod. Based on the phenomenon of micro-anchoring and electrostatic interaction, a change in frequency during MAO showed considerable improvements in the ductility of the composite materials. The presence of the ceramic layer enriched the interfacial bonding between the Mg rod and outer PLA cladding, resulting in the PLA-clad Mg rod showing a higher tensile strength. In vitro degradation test was carried out in Hank's solution for different time periods. Surface-treated Mg alloy-based composite samples displayed a lower degradation rate as compared to untreated Mg alloy samples. The surface-treated sample at a 800 Hz pulse frequency showed the best degradation resistance and mechanical properties after being immersed in Hank's solution as compared to other samples. Mg-reinforced PLA composite rods are promising candidates for orthopedic implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...