Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35056668

ABSTRACT

Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/metabolism , Imidazolidines/chemistry , Isatin/pharmacology , Neoplasms/drug therapy , Thiazolidines/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation , HeLa Cells , Humans , Isatin/chemistry , MCF-7 Cells , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship
2.
Mol Divers ; 26(6): 3241-3254, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35083622

ABSTRACT

Thiazole derivatives are known inhibitors of alkaline phosphatase, but various side effects have reduced their curative efficacy. Conversely, compounds bearing azomethine linkage display a broad spectrum of biological applications. Therefore, combining the two scaffolds in a single structural unit should result in joint beneficial effects of both. A new series of azomethine-clubbed thiazoles (3a-i) was synthesized and appraised for their inhibitory potential against human tissue non-specific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). Compounds 3c and 3f were found to be most potent compounds toward h-TNAP with IC50 values of 0.15 ± 0.01 and 0.50 ± 0.01 µM, respectively, whereas 3a and 3f exhibited maximum potency for h-IAP with IC50 value of 2.59 ± 0.04 and 2.56 ± 0.02 µM, respectively. Molecular docking studies were also performed to find the type of binding interaction between potential inhibitor and active sites of enzymes. The enzymes inhibition kinetics studies were carried out to define the mechanism of enzyme inhibition. The current study leads to discovery of some potent inhibitors of alkaline phosphatase that is promising toward identification of compounds with druggable properties.


Subject(s)
Alkaline Phosphatase , Enzyme Inhibitors , Thiazoles , Humans , Alkaline Phosphatase/antagonists & inhibitors , Alkaline Phosphatase/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...