Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 95: 107591, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34702631

ABSTRACT

N-heterocyclic carbene (NHC) adducts have shown remarkable biological potential for numerous medical applications. With an aim to improve biological potential of benzimidazolium salts, newer analogues of benzimidazole and their silver complexes were synthesized and characterized. Synthesized salts (L1-L2) and silver complexes (C1-C2) were confirmed through elemental analysis, UV-visible spectroscopy, FTIR, 1H NMR & 13C NMR spectroscopy. The compounds C1 & C2 were found stable in solution form for studied time period when examined spectroscopically and showed optimum lipophilicity when measured for their partition coefficient through flask shake method. Synthesized compounds showed good antimicrobial potential against gram positive bacterial strain S. Aureus with IC50 2.02±0.12 and 2.11±0.13 µM respectively while 2.11±0.1 and 2.28±0.17 µM against gram negative bacterial strain E. Coli for C1 and C2 respectively. The interaction study of the related compounds with DNA was predicted by molecular docking study, which confirmed that the studied compound C1 (-8.04 kcal/mol) has a higher binding energy than compound C2 (-4.23 kcal/mol); Also, the compound C1 exhibits a better affinity against to DNA than Ethidium bromide (-7.68 kcal/mol) and cisplatin (-6.21 kcal/mol).The claim was practically assured through spectroscopic and viscometeric method which confirmed that compounds have good affinity for DNA with binding constant kb, 5.78×104 M-1 and 6.84×104 M-1 for C1 and C2 respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , DNA/chemistry , Density Functional Theory , Heterocyclic Compounds/pharmacology , Methane/analogs & derivatives , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cattle , Drug Design , Escherichia coli/drug effects , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Methane/chemistry , Methane/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Picrates/antagonists & inhibitors , Staphylococcus aureus/drug effects , Viscosity
2.
Microb Pathog ; 159: 105138, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34390767

ABSTRACT

The current study probed methicillin resistant S. aureus from milk of different dairy farms along with its response to multiple antibiotics, assessment of risk factors, and response to antibiotic coupled nanoparticle. XRD of Np was confirmed as miller indices (hkl) values i.e. (101), (100), (002), (110), (012) and (013) while STEM finally revealed 40-60 nm nanorods in aggregated form. Total of 6 preparations viz a viz gentamicin (G), chloramphenicol (C), zinc oxide nanoparticle (Np), gentamicin coupled Np (GNp), chloramphenicol coupled Np (CNp), and simultaneously coupling of gentamicin and chloramphenicol on Np (GCNp) were formulated for their potential to bring resistance modulation. Data analysis of this study revealed 24.59% MRSA from dairy milk appearing potentially associated (OR> 1, p < 0.05) with most of assumed risk factors. MRSA in response to various antibiotics showed highest resistance against amoxicillin (100%), penicillin (100%), vancomycin (100%), and linezolid (90%). Zone of inhibitions were increased by 249.76% (GNp), 184.86% (CNp), and 279.76% (GCNp) in case of coupled preparations. Significant reduced minimum inhibitory concentration was observed in case of GCNp (7.8125 ± 0.00 µg/mL) followed by GNp (15.00 ± 0.00 µg/mL) and CNp (41.67 ± 18.042 µg/mL) as compared to Np alone (125.00 ± 0.00 µg/mL). Minimum bactericidal concentrations for GCNp, GNp, and CNp, and Np were 31.125, 62.5, 125, and 500 µg/mL, respectively. The study thus concluded increased prevalence of MRSA while coupling of ZnO nanoparticles with antibiotics significantly brought resistance modulation to MRSA.


Subject(s)
Epidemics , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Oxides , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology
3.
Scientifica (Cairo) ; 2016: 1598325, 2016.
Article in English | MEDLINE | ID: mdl-27293964

ABSTRACT

Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...