Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Allergy Asthma Immunol ; 22(4): 345-353, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37767677

ABSTRACT

COVID-19, an acute respiratory syndrome caused by the SARS-CoV-2 virus, was first reported in late 2019 in Wuhan, China, and rapidly escalated into a global pandemic. The condition can lead to organ dysfunction and ultimately death through its onset of acute respiratory distress syndrome (ARDS). Disease severity has been linked to proinflammatory cytokines which activate the NF-κB and STAT transcription factors in infected cells. It has been proven that lncRNAs play a very important role in reducing or increasing inflammatory factors. This makes them potentially valuable in recognizing pathogenesis pathways and therapeutic targets in COVID-19. Nanocurcumin is known as an antioxidant, tumor suppressor and anti-inflammatory substance, and it can be effective to reduce inflammation caused by the disease of COVID-19. This study analyzed Sequence Read Archive data from COVID-19 patients with acute versus milder symptoms, identifying dysregulated genes and non-coding RNAs. To verify this correlation, the expression of the candidate gene was evaluated with quantitative polymerase chain reaction (qPCR) in mouse models, while immunoglobulin (Ig) G titer was measured using enzyme-linked immunosorbent assay (ELISA) in mouse serum samples. Here we introduced a novel lncRNA called HSD17B3-AS1, suggested as a therapeutic target in COVID-19 patients with acute symptoms. Furthermore, we revealed nanocurcumin is reducing the expression of HSD17B3-AS1 which leads to reduced inflammation in mice. These results suggest that HSD17B3-AS1 plays a significant regulatory role in managing COVID-19, and the downregulation of HSD17B3-AS1 by Nanocurcumin presents a promising treatment option for minimizing complications in COVID-19 patients.


Subject(s)
COVID-19 , RNA, Long Noncoding , Animals , Humans , Mice , Antioxidants , COVID-19/genetics , COVID-19/metabolism , Immunoglobulin G , Inflammation , RNA, Long Noncoding/genetics , SARS-CoV-2 , Curcumin/pharmacology , Curcumin/therapeutic use
3.
Cell Mol Neurobiol ; 43(5): 2309-2322, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36449154

ABSTRACT

Glioma is a malignancy of the central nervous system with a poor prognosis. Therefore, the elaboration of its molecular features creates therapeutic opportunities. Looking for the regulatory non-coding RNAs (lncRNAs and miRNAs) that are involved in glioma incidence/progression, RNA-seq analysis introduced upregulated ADAMTS9-AS1 as a bona fide candidate that sponges miR-128 and miR-150 and shows the negative correlation of expression with them. Then, RT-qPCR verified the upregulation of ADAMTS9-AS1 in glioma tissues and cell lines. Furthermore, dual-luciferase assay supported that cytoplasmic ADAMTS9-AS1 is capable of sponging miR-128 and miR-150, which are known as regulators of Ras/MAPK, PI3K, and Wnt pathways. Following the overexpression of ADAMTS9-AS1 in 1321N1 and U87 glioma cells, tyrosine kinase receptors (IGF1R and TrkC), as well as Wnt receptors (Lrp6 and Fzd) were upregulated, detected by RT-qPCR. Furthermore, downstream genes of both Ras/MAPK and Wnt pathways were upregulated. Finally following the ADAMTS9-AS1 overexpression, upregulation of Ras/MAPK and Wnt signaling pathways was verified through western blotting and Top/Fop flash assay, respectively. At the cellular level, ADAMTS9-AS1 overexpression brought about reduced sub-G1 cell population, increased proliferation rate, reduced apoptosis level, increased migration rate, shortened Bax/Bcl2 ratio, induced EMT, and stemness characteristics of transfected cells, detected by flow cytometry, MTT assay, scratch test, and RT-qPCR. Overall, these results introduced ADAMTS9-AS1 as an oncogene that upregulates Ras/MAPK and Wnt pathways through sponging of the miR-128 and miR-150 in glioma cells. The outcome of ADAMTS9-AS1 expression is more aggression of the glioma cells through increased EMT and stemness characteristics. These features candidate ADAMTS9-AS1 locus for glioma therapy. As a result, we discovered the oncogenic properties of ADAMTS9-AS1 in glioma cancer. It sponges miR-128 and miR-150 and subsequently overstimulates RAS/MAPK and Wnt signaling pathways, particularly at the receptors level. Thus, ADAMTS9-AS1 increases proliferation, migration, and stemness in glioma cell lines. A schematic representation showing the functional effect of ADAMTS9-AS1.


Subject(s)
Glioma , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Glioma/pathology , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Receptor Protein-Tyrosine Kinases/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , ADAMTS9 Protein/genetics , ADAMTS9 Protein/metabolism
4.
J Neurooncol ; 158(1): 1-13, 2022 May.
Article in English | MEDLINE | ID: mdl-35460500

ABSTRACT

PURPOSE: LncRNAs play essential roles in the cellular and molecular biology of glioma. Some LncRNAs exert their role through sponging miRNAs and regulating multiple signaling pathways. LINC02381 is involved in several cancer types as either oncogene or tumor suppressor. Here, we intended to find the molecular mechanisms of the LINC02381 effect during the glioma progression in related cell lines. METHODS AND RESULTS: RNA-seq data analysis indicated the oncogenic characteristics of LINC02381, and RT-qPCR results confirmed its upregulation compared to normal tissues. Besides its expression was relatively stronger in invasive glioma cell lines. Furthermore, in silico analysis revealed LINC02381 is concentrated in the cytoplasm and predicted its sponging effect against miR-128 and miR-150, which was verified through dual luciferase assay. When LINC02381 was overexpressed in 1321N1, U87, and A172 cell lines, IGF1R and TrkC receptors as well as their downstream pathways (PI3K and RAS/MAPK), were upregulated, detected by RT-qPCR, and verified by western analysis. Consistently, LINC02381 overexpression was followed by an increased proliferation rate of transfected glioma cell lines, detected by flow cytometry and MTT assay, and RT-qPCR. It also resulted in elevated EMT and stemness markers expression level, increased migration rate, and reduced apoptosis rate, detected by RT-qPCR, western analysis, scratch test, and Annexin/PI flow cytometry analysis, respectively. CONCLUSION: The overall results indicated that LINC02381 exerts its oncogenic effect in glioma cells through sponging miR-128 and miR-150 to upregulate the IGF1R signaling pathway. Our results introduce LINC02381 and miR-128, and miR-150 as potential prognosis and therapy targets for the treatment of glioma.


Subject(s)
Brain Neoplasms , Glioma , MicroRNAs , RNA, Long Noncoding , Receptor, IGF Type 1 , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
5.
J Cell Biochem ; 123(4): 746-758, 2022 04.
Article in English | MEDLINE | ID: mdl-35060166

ABSTRACT

HER2 signaling upregulation is a hallmark of breast cancer which is the second cause of cancer-related death in women. Here, we were looking for the candidate microRNAs which is capable of regulating the HER2 receptor and the genes of its downstream. To this aim, preliminary bioinformatics analysis introduced hsa-miR-1254 (miR-1254) as a potential common regulator of HER2, HER3, PIK3R2, and AKT1 genes. Then, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis indicated a lower expression level of miR-1254 in breast cancer specimens, compared to their normal pairs. Furthermore, overexpression of miR-1254 resulted in HER2, HER3, PIK3R2, and AKT1 genes downregulation, detected by RT-qPCR and confirmed by western blot analysis and enzyme-linked immunosorbent assay test against AKT1, BAX, FADD, and HER2 protein levels in SKBR3 cells. Dual-luciferase assay also supported direct interaction of miR-1254 with MREs within 3' untranslated region sequences of HER2, HER3, PIK3R2, and AKT1 target genes. Overexpression of miR-1254 in SKBR3 cells was followed by increased BAX/BCL2 expression ratio, detected by RT-qPCR, and increased proportion of G1 cell population, detected by flow cytometry. Corroborated by cell cycle analysis, MTT, Annexin V-FITC, and Live-Dead cell staining assays, overexpression of miR-1254 in MDA-MB-231 cells showed opposing results following the overexpression of miR-1254. Taken together, results indicated that miR-1254 acts as cell-type-specific tumor suppressor that targets HER2, HER3, PIK3R2, and AKT1 transcripts. These results suggest miR-1254 as a potential therapeutic candidate for breast cancer subtypes.


Subject(s)
Breast Neoplasms , MicroRNAs , 3' Untranslated Regions , Breast Neoplasms/metabolism , Female , Humans , MicroRNAs/genetics , Receptor, ErbB-2 , Signal Transduction/genetics , bcl-2-Associated X Protein/genetics
6.
Infect Genet Evol ; 90: 104773, 2021 06.
Article in English | MEDLINE | ID: mdl-33607284

ABSTRACT

The third pandemic of coronavirus infection, called COVID-19 disease, was first detected in November 2019th. Various determinants of disease progression such as age, sex, virus mutations, comorbidity, lifestyle, host immune response, and genetic background variation have caused clinical variability of COVID-19. The causative agent of COVID-19 is an enveloped coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that invades host cells using an endocytic pathway. The SARS-CoV-2 spike protein is the main viral protein that contributes to the fusion of the virus particle to the host cell through angiotensin-converting enzyme 2 (ACE2). The highly conserved expression of ACE2 is found in various animals, which indicates its pivotal physiological function. The ACE2 has a crucial role in vascular, renal, and myocardial physiology. Genetic factors contributing to the outcome of SARS-CoV-2 infection are unknown; however, variants in the specific sites of ACE2 gene could be regarded as a main genetic risk factor for COVID-19. Given that ACE2 is the main site for virus landing on host cells, the effect of amino acid sequences of ACE2 on host susceptibility to COVID-19 seems reasonable. It would likely have a substantial role in the occurrence of a wide range of clinical symptoms. Several ACE2 variants can affect the protein stability, influencing the interaction between spike protein and ACE2 through imposing conformational changes while some other variants are known to cause a decrease or an increase in the ligand-receptor affinity. The other variations are located at the proteolytic cleavage site, which can influence virus infection; because soluble ACE2 can act as a decoy receptor for virus and decrease virus intake by cell surface ACE2. Notably, polymorphisms of regulatory and non-coding regions such as promoter in ACE2, can play crucial role in different expression levels of ACE2 among different individuals. Many studies should be performed to investigate the involvement of ACE2 polymorphism with susceptibility to COVID-19. Herein, we discuss some reported associations between variants of ACE2 and COVID-19 in details. In addition, the mode of action of ACE2 and its role in SARS-CoV-2 infection are highlighted which is followed by addressing the effects of several ACE2 variants on its protein stability, viral tropism or ligand-receptor affinity, secondary and tertiary structure or protein conformation, proteolytic cleavage site, and finally inter-individual clinical variability in COVID-19. The polymorphisms of regulatory regions of ACE2 and their effect on expression levels of ACE2 are also provided in this review. Such studies can improve the prediction of the affinity of mutant ACE2 variations with spike protein, and help the biopharmaceutical industry to design effective approaches for recombinant hACE2 therapy and vaccination of COVID-19 disease.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/virology , Disease Susceptibility , Genetic Variation , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Disease Management , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Immunity, Innate , Polymorphism, Single Nucleotide , Prognosis , Protein Binding , Receptors, Virus/metabolism , Severity of Illness Index
7.
J Cancer Res Clin Oncol ; 146(5): 1205-1215, 2020 May.
Article in English | MEDLINE | ID: mdl-32034483

ABSTRACT

Non-coding RNAs (ncRNAs) are reported to be regulators of signaling pathways that are involved in colorectal cancer (CRC) progression. Aiming at finding ncRNAs (miRNAs) that are differentially expressed in tumor versus normal colorectal tissue samples, online RNA-seq data were analyzed. Of between 18 candidate miRNAs, hsa-miR-29b-1 (miR-29b-1) represented the highest fold change of expression level. Hsa-miR-29b-1 is encoded from the third intron of LOC646329 long ncRNA gene. Surprisingly, two miR-29b sponging sites were predicted within exons of LOC646329 gene. Then, dual luciferase assay supported the interaction of miR-29b-1 with LOC646329-variant D transcript. Also, a direct indication of miR-29b-1 with 3'UTR sequence of SMAD3 gene was verified through dual luciferase assay and RT-qPCR analysis. Furthermore, a reverse pattern of expression was detected between miR-29b-1 and LOC646329-variant D transcript in about 25 pairs of CRC tumor samples, detected by RTqPCR. Consistently, overexpression of LOC646329-variant D transcript was followed by increased SMAD3 and p21 genes expression level and downregulation of CyclinD1 genes in HCT116 cells, detected by RT-qPCR, and western analysis. Also, overexpression of it was followed by increased G1 cell population of HCT-116 cells. All of these data suggested a tumor suppressor effect for LOC646329-variant D in CRC tumor tissue samples, consistent to its reduced expression level at late stages of CRC progression. Data also indicated that LOC646329-variant D exerts its suppression effect on CRC progression through sponging miR-29b, which in turn regulates Wnt and TGFB signaling pathways. This makes LOC646329-variant D transcript as a novel potential therapy target.


Subject(s)
Colorectal Neoplasms/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Colorectal Neoplasms/genetics , Computational Biology , HCT116 Cells , HEK293 Cells , HT29 Cells , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...