Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Andrologia ; 48(10): 1100-1107, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26892722

ABSTRACT

Embryonic stem cell (ESC) therapy is an exciting way to treat neurodegenerative disease and central nervous system injury. However, many ethical and immunological problems surround the use of embryonic stem cells. Finding an alternative source of stem cells is therefore pertinent. In this study, spermatogonia stem cells (SSCs) were used to generate mature motor neurons. SSCs were extracted from neonatal testes and cultured in DMED/F12 medium for 3 weeks. Characterisation of SSC-derived ESC-like cells was confirmed by RT-qPCR, immunostaining, alkaline phosphatase activity and their ability to form embryoid bodies (EBs). The EBs were induced by retinoic acid and Sonic hedgehog and trypsinised to obtain single induced cells. The single cells were cultured in neural medium for 18 days. Characterisation of neural precursors and motor neuron-like cells was confirmed by RT-qPCR and immunocytochemical analysis at the 7th day (early stage) and 18th day (late stage), respectively, of culturing. The neural precursors were found to be positive for nestin and Sox2, and a small fraction of cells expressed ß-tubulin III. Upon further differentiation, multipolar neurons were detected that expressed ß-tubulin III and MAP2 markers. Moreover, the expression levels of Olig2 and PAX6 were significantly lower, while HB9, Isl1 and Isl2 expression levels were higher at the late stage when compared to the early stage. These results show that SSCs have the potential to differentiate to motor neuron-like cells and express markers specific for mature motor neurons. However, the functional ability of these cells remains to be evaluated in future studies.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Motor Neurons/cytology , Testis/cytology , Animals , Animals, Newborn , Cells, Cultured , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...