Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762646

ABSTRACT

In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (ß-CP) act as contact sensitizers. The repeated topical application of mice skin with ß-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for ß-CP at 10 mg/mL. For CBD and ß-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for ß-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with ß-CP in a concentration-dependent manner. Mast cell trafficking was restricted to ß-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with ß-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with ß-CP. Treatment with ß-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of ß-CP can induce dermatitis-like pathological outcomes in mice.


Subject(s)
Angioedema , Cannabidiol , Cannabis , Dermatitis , Hallucinogens , Humans , Animals , Mice , Filaggrin Proteins , Inflammation/chemically induced , Cannabinoid Receptor Agonists , Pruritus , Complement C5 , Complement C5a , Immunoglobulin E
2.
Am J Respir Cell Mol Biol ; 69(5): 584-591, 2023 11.
Article in English | MEDLINE | ID: mdl-37523713

ABSTRACT

Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.


Subject(s)
Actins , Receptors, Prostaglandin E, EP2 Subtype , Humans , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Histamine/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Dinoprostone , Muscle, Smooth/metabolism , Lung/metabolism , Cyclic AMP-Dependent Protein Kinases
3.
Am J Respir Cell Mol Biol ; 65(6): 658-671, 2021 12.
Article in English | MEDLINE | ID: mdl-34293268

ABSTRACT

Exaggerated airway smooth muscle (ASM) contraction regulated by the Gq family of G protein-coupled receptors causes airway hyperresponsiveness in asthma. Activation of Gq-coupled G protein-coupled receptors leads to phospholipase C (PLC)-mediated generation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG signaling is terminated by the action of DAG kinase (DGK) that converts DAG into phosphatidic acid (PA). Our previous study demonstrated that DGKζ and α isoform knockout mice are protected from the development of allergen-induced airway hyperresponsiveness. Here we aimed to determine the mechanism by which DGK regulates ASM contraction. Activity of DGK isoforms was inhibited in human ASM cells by siRNA-mediated knockdown of DGKα and ζ, whereas pharmacological inhibition was achieved by pan DGK inhibitor I (R59022). Effects of DGK inhibition on contractile agonist-induced activation of PLC and myosin light chain (MLC) kinase, elevation of IP3, and calcium levels were assessed. Furthermore, we used precision-cut human lung slices and assessed the role of DGK in agonist-induced bronchoconstriction. DGK inhibitor I attenuated histamine- and methacholine-induced bronchoconstriction. DGKα and ζ knockdown or pretreatment with DGK inhibitor I resulted in attenuated agonist-induced phosphorylation of MLC and MLC phosphatase in ASM cells. Furthermore, DGK inhibition decreased Gq agonist-induced calcium elevation and generation of IP3 and increased histamine-induced production of PA. Finally, DGK inhibition or treatment with DAG analog resulted in attenuation of activation of PLC in human ASM cells. Our findings suggest that DGK inhibition perturbed the DAG:PA ratio, resulting in inhibition of Gq-PLC activation in a negative feedback manner, resulting in protection against ASM contraction.


Subject(s)
Bronchoconstriction/drug effects , Diacylglycerol Kinase/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Muscle Contraction/drug effects , Muscle, Smooth/enzymology , Pyrimidinones/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , Bronchoconstriction/genetics , Cells, Cultured , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Knockdown Techniques , Humans , Muscle Contraction/genetics , Signal Transduction/genetics
4.
FASEB J ; 34(2): 2126-2146, 2020 02.
Article in English | MEDLINE | ID: mdl-31909533

ABSTRACT

Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction. In this study, we hypothesized that BSM dysfunction associated with overexpression of desmin or vimentin is mediated via c-Jun N-terminal kinase (JNK). We employed a model of murine BSM tissue in which increased expression of desmin or vimentin was induced by adenoviral transduction to examine the sufficiency of increased IF protein expression to reduce BSM contraction. Murine BSM strips overexpressing desmin or vimentin generated less force in response to KCl and carbachol relative to the levels in control murine BSM strips, an effect associated with increased JNK2 phosphorylation and reduced myosin light chain (MLC20 ) phosphorylation. Furthermore, desmin and vimentin overexpressions did not alter BSM contractility and MLC20 phosphorylation in strips isolated from JNK2 knockout mice. Pharmacological JNK2 inhibition produced results qualitatively similar to those caused by JNK2 knockout. These findings suggest that inhibition of JNK2 may improve diminished BSM contractility associated with obstructive bladder disease.


Subject(s)
Desmin/biosynthesis , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 9/metabolism , Muscle Contraction , Muscle, Smooth/metabolism , Urinary Bladder/metabolism , Vimentin/biosynthesis , Animals , Desmin/genetics , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 9/genetics , Muscle, Smooth/cytology , Urinary Bladder/cytology , Vimentin/genetics
5.
Am J Pathol ; 189(4): 847-867, 2019 04.
Article in English | MEDLINE | ID: mdl-30707892

ABSTRACT

Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans. We identified and characterized regulatory regions responsible for CAV1, CAV2, and CAV3 gene expression in mice with obstruction-induced BSM hypertrophy, and in men with benign prostatic hyperplasia. DNA affinity chromatography and chromatin immunoprecipitation assays revealed a greater increase in binding of GATA-binding factor 6 (GATA-6) and NF-κB to their cognate binding motifs on CAV1, CAV2, and CAV3 promoters in obstructed BSM relative to that observed in control BSM. Knockout of NF-κB subunits, shRNA-mediated knockdown of GATA-6, or pharmacologic inhibition of GATA-6 and NF-κB in BSM increased CAV1, CAV2, and CAV3 transcription and promoter activity. Conversely, overexpression of GATA-6 decreased CAV2 and CAV3 transcription and promoter activity. Collectively, these data provide new insight into the mechanisms by which CAV gene expression is repressed in hypertrophied BSM in obstructive bladder disease.


Subject(s)
Caveolins/antagonists & inhibitors , GATA6 Transcription Factor/metabolism , Hypertrophy/pathology , Muscle, Smooth/pathology , NF-kappa B/metabolism , Transcription, Genetic , Urinary Bladder Neck Obstruction/complications , Aged , Animals , Biomarkers/analysis , Caveolins/genetics , Caveolins/metabolism , GATA6 Transcription Factor/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Hypertrophy/etiology , Hypertrophy/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Muscle Contraction , Muscle, Smooth/metabolism , NF-kappa B/genetics , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Urinary Bladder Neck Obstruction/surgery
6.
Exp Neurol ; 271: 479-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26216662

ABSTRACT

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor neurons at the diaphragm neuromuscular junction, and (3) functional diaphragm denervation as measured by recording of spontaneous EMGs and evoked compound muscle action potentials. Our findings demonstrate that hiPSA transplantation is a therapeutically-powerful approach for SCI.


Subject(s)
Astrocytes/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Spinal Cord Injuries/surgery , Action Potentials/physiology , Animals , Astrocytes/transplantation , Cell Differentiation , Cell Proliferation , Cells, Cultured , Diaphragm/physiopathology , Disease Models, Animal , Excitatory Amino Acid Transporter 2 , Female , Gene Expression Regulation , Glutamate Plasma Membrane Transport Proteins/genetics , Glutamate Plasma Membrane Transport Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology
7.
Mol Ther ; 23(3): 533-48, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25492561

ABSTRACT

Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI.


Subject(s)
Astrocytes/transplantation , Cell- and Tissue-Based Therapy/methods , Diaphragm/metabolism , Excitatory Amino Acid Transporter 2/genetics , Spinal Cord Injuries/therapy , Spinal Cord/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Dependovirus/genetics , Diaphragm/pathology , Disease Models, Animal , Excitatory Amino Acid Transporter 2/metabolism , Female , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Phrenic Nerve/injuries , Phrenic Nerve/metabolism , Phrenic Nerve/pathology , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Transgenes
8.
J Neurosci ; 34(22): 7622-38, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24872566

ABSTRACT

A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP(+) astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.


Subject(s)
Astrocytes/pathology , Cervical Vertebrae , Diaphragm/metabolism , Excitatory Amino Acid Transporter 2/biosynthesis , Forelimb/physiopathology , Motor Neurons/metabolism , Nerve Degeneration/metabolism , Spinal Cord Injuries/metabolism , Animals , Astrocytes/metabolism , Diaphragm/physiopathology , Excitatory Amino Acid Transporter 2/genetics , Female , Forelimb/metabolism , Gene Expression Regulation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/pathology , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Phrenic Nerve/metabolism , Phrenic Nerve/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology
9.
Asian Pac J Cancer Prev ; 14(10): 5855-60, 2013.
Article in English | MEDLINE | ID: mdl-24289589

ABSTRACT

Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI) <1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Isothiocyanates/pharmacology , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Deoxycytidine/pharmacology , Down-Regulation/drug effects , Drug Synergism , Female , Humans , MCF-7 Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfoxides , Gemcitabine
10.
Asian Pac J Cancer Prev ; 13(9): 4815-22, 2012.
Article in English | MEDLINE | ID: mdl-23167425

ABSTRACT

Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti- proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time- dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1) . These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.


Subject(s)
Anticarcinogenic Agents/pharmacology , Catechin/analogs & derivatives , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Catechin/pharmacology , Chromatin/drug effects , DNA Fragmentation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Matrix Metalloproteinase 9/genetics , Neoplasm Invasiveness , Signal Transduction , Tissue Inhibitor of Metalloproteinase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...