Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Npj Imaging ; 2(1): 17, 2024.
Article in English | MEDLINE | ID: mdl-38948152

ABSTRACT

Label-free autofluorescence lifetime is a unique feature of the inherent fluorescence signals emitted by natural fluorophores in biological samples. Fluorescence lifetime imaging microscopy (FLIM) can capture these signals enabling comprehensive analyses of biological samples. Despite the fundamental importance and wide application of FLIM in biomedical and clinical sciences, existing methods for analysing FLIM images often struggle to provide rapid and precise interpretations without reliable references, such as histology images, which are usually unavailable alongside FLIM images. To address this issue, we propose a deep learning (DL)-based approach for generating virtual Hematoxylin and Eosin (H&E) staining. By combining an advanced DL model with a contemporary image quality metric, we can generate clinical-grade virtual H&E-stained images from label-free FLIM images acquired on unstained tissue samples. Our experiments also show that the inclusion of lifetime information, an extra dimension beyond intensity, results in more accurate reconstructions of virtual staining when compared to using intensity-only images. This advancement allows for the instant and accurate interpretation of FLIM images at the cellular level without the complexities associated with co-registering FLIM and histology images. Consequently, we are able to identify distinct lifetime signatures of seven different cell types commonly found in the tumour microenvironment, opening up new opportunities towards biomarker-free tissue histology using FLIM across multiple cancer types.

2.
Sci Rep ; 11(1): 18478, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531477

ABSTRACT

With the presence of novel coronavirus disease at the end of 2019, several approaches were proposed to help physicians detect the disease, such as using deep learning to recognize lung involvement based on the pattern of pneumonia. These approaches rely on analyzing the CT images and exploring the COVID-19 pathologies in the lung. Most of the successful methods are based on the deep learning technique, which is state-of-the-art. Nevertheless, the big drawback of the deep approaches is their need for many samples, which is not always possible. This work proposes a combined deep architecture that benefits both employed architectures of DenseNet and CapsNet. To more generalize the deep model, we propose a regularization term with much fewer parameters. The network convergence significantly improved, especially when the number of training data is small. We also propose a novel Cost-sensitive loss function for imbalanced data that makes our model feasible for the condition with a limited number of positive data. Our novelties make our approach more intelligent and potent in real-world situations with imbalanced data, popular in hospitals. We analyzed our approach on two publicly available datasets, HUST and COVID-CT, with different protocols. In the first protocol of HUST, we followed the original paper setup and outperformed it. With the second protocol of HUST, we show our approach superiority concerning imbalanced data. Finally, with three different validations of the COVID-CT, we provide evaluations in the presence of a low number of data along with a comparison with state-of-the-art.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Deep Learning , Early Diagnosis , Humans , Neural Networks, Computer , Tomography, X-Ray Computed
3.
Artif Intell Med ; 99: 101702, 2019 08.
Article in English | MEDLINE | ID: mdl-31606110

ABSTRACT

The automated analysis of retinal images is a widely researched area which can help to diagnose several diseases like diabetic retinopathy in early stages of the disease. More specifically, separation of vessels and lesions is very critical as features of these structures are directly related to the diagnosis and treatment process of diabetic retinopathy. The complexity of the retinal image contents especially in images with severe diabetic retinopathy makes detection of vascular structure and lesions difficult. In this paper, a novel framework based on morphological component analysis (MCA) is presented which benefits from the adaptive representations obtained via dictionary learning. In the proposed Bi-level Adaptive MCA (BAMCA), MCA is extended to locally deal with sparse representation of the retinal images at patch level whereas the decomposition process occurs globally at the image level. BAMCA method with appropriately offline learnt dictionaries is adopted to work on retinal images with severe diabetic retinopathy in order to simultaneously separate vessels and exudate lesions as diagnostically useful morphological components. To obtain the appropriate dictionaries, K-SVD dictionary learning algorithm is modified to use a gated error which guides the process toward learning the main structures of the retinal images using vessel or lesion maps. Computational efficiency of the proposed framework is also increased significantly through some improvement leading to noticeable reduction in run time. We experimentally show how effective dictionaries can be learnt which help BAMCA to successfully separate exudate and vessel components from retinal images even in severe cases of diabetic retinopathy. In this paper, in addition to visual qualitative assessment, the performance of the proposed method is quantitatively measured in the framework of vessel and exudate segmentation. The reported experimental results on public datasets demonstrate that the obtained components can be used to achieve competitive results with regard to the state-of-the-art vessel and exudate segmentation methods.


Subject(s)
Deep Learning , Diabetic Retinopathy/diagnosis , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Retina/pathology , Algorithms , Diabetic Retinopathy/diagnostic imaging , Humans , Retina/diagnostic imaging
4.
Comput Methods Programs Biomed ; 139: 93-108, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28187898

ABSTRACT

Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed. The proposed system yields a strong representation which contains the semantic concept of the image. To extract blood vessel, two separate dictionaries, for vessel and non-vessel, capable of providing reconstructive and discriminative information of the retinal image are learned. In the test step, an unseen retinal image is divided into overlapping patches and classified to vessel and non-vessel patches. Then, a voting scheme is applied to generate the binary vessel map. The proposed vessel segmentation method can achieve the accuracy of 95% and a sensitivity of 75% in the same range of specificity 97% on two public datasets. The results show that the proposed method can achieve comparable results to existing methods and decrease false positive vessels in abnormal retinal images with pathological regions. Microaneurysm (MA) is the earliest sign of DR that appears as a small red dot on the surface of the retina. Despite several attempts to develop automated MA detection systems, it is still a challenging problem. In this paper, a method for MA detection, which is similar to our vessel segmentation approach, is proposed. In our method, a candidate detection algorithm based on the Morlet wavelet is applied to identify all possible MA candidates. In the next step, two discriminative dictionaries with the ability to distinguish MA from non-MA object are learned. These dictionaries are then used to classify the detected candidate objects. The evaluations indicate that the proposed MA detection method achieves higher average sensitivity about 2-15%, compared to existing methods.


Subject(s)
Blood Vessels/pathology , Microaneurysm/diagnosis , Algorithms , Humans
5.
Comput Methods Programs Biomed ; 118(3): 263-79, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25697986

ABSTRACT

Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions. To overcome this problem, a novel scheme for extracting retinal blood vessels based on morphological component analysis (MCA) algorithm is presented in this paper. MCA was developed based on sparse representation of signals. This algorithm assumes that each signal is a linear combination of several morphologically distinct components. In the proposed method, the MCA algorithm with appropriate transforms is adopted to separate vessels and lesions from each other. Afterwards, the Morlet Wavelet Transform is applied to enhance the retinal vessels. The final vessel map is obtained by adaptive thresholding. The performance of the proposed method is measured on the publicly available DRIVE and STARE datasets and compared with several state-of-the-art methods. An accuracy of 0.9523 and 0.9590 has been respectively achieved on the DRIVE and STARE datasets, which are not only greater than most methods, but are also superior to the second human observer's performance. The results show that the proposed method can achieve improved detection in abnormal retinal images and decrease false positive vessels in pathological regions compared to other methods. Also, the robustness of the method in the presence of noise is shown via experimental result.


Subject(s)
Algorithms , Image Enhancement/methods , Retinal Vessels/pathology , Computational Biology , Databases, Factual , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/pathology , Humans , Pattern Recognition, Automated/statistics & numerical data , Signal Processing, Computer-Assisted , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...