Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 115: 250-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25725458

ABSTRACT

Estuarine systems are among the most impacted ecosystems due to anthropogenic contaminants; however, they present unique challenges to toxicity testing with regard to varying water quality parameters. The euryhaline amphipod species, Hyalella azteca, is widely used in toxicity testing and well suited for testing estuarine water samples. Nevertheless, the influence of relevant water quality parameters on test endpoints must be quantified in order to efficiently use this species for routine monitoring. Here, we studied the influence of five water quality parameters: electrical conductivity, pH, un-ionized ammonia, dissolved oxygen and temperature, on H. azteca survival in a water column toxicity test. A model was developed to quantify and predict the independent and interacting effects of water quality variables on 10-day survival. The model allows simultaneous assessment of multiple potential predictors recorded during the tests. Data used for modeling came from 1089 tests performed on ambient water samples over a period of three years (2006-2008). The final model reflects significant effects of predictors and their two-way interactions. The effect of each level of all predictors on survival probability of H. azteca was examined by comparing levels of each predictor at a time, while holding all others at their lowest (reference) level. This study showed that predictors of survival in water column tests should not be evaluated in isolation in the interpretation of H. azteca water column tests. Our model provides a useful tool to predict expected control survival based on relevant water quality parameters, and thus enables the use of H. azteca tests for toxicity monitoring in estuaries with a wide range of water quality conditions.


Subject(s)
Amphipoda/drug effects , Estuaries , Water Pollutants/toxicity , Water Quality , Ammonia/analysis , Animals , Ecosystem , Electric Conductivity , Logistic Models , Oxygen/analysis , Temperature , Toxicity Tests , Water/chemistry
2.
Sci Total Environ ; 468-469: 688-98, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24061060

ABSTRACT

Contaminant exposure is one possible contributor to population declines of endangered fish species in the Sacramento-San Joaquin Estuary, California, including the endangered delta smelt (Hypomesus transpacificus). Herein we investigated transcriptional responses in larval delta smelt resulting from exposure to water samples collected at the Department of Water Resources Field Station at Hood, a site of concern, situated upstream of known delta smelt habitat and spawning sites and downstream of the Sacramento Regional Wastewater Treatment Plant (SRWTP). Microarray assessments indicate impacts on energy metabolism, DNA repair mechanisms and RNA processing, the immune system, development and muscle function. Transcription responses of fish exposed to water samples from Hood were compared with exposures to 9% effluent samples from SRWTP, water from the Sacramento River at Garcia Bend (SRGB), upstream of the effluent discharge, and SRGB water spiked with 2mg/L total ammonium (9% effluent equivalent). Results indicate that transcriptomic profiles from Hood are similar to 9% SRWTP effluent and ammonium spiked SRGB water, but significantly different from SRGB. SRGB samples however were also significantly different from laboratory controls, suggesting that SRWTP effluent is not solely responsible for the responses determined at Hood, that ammonium exposure likely enhances the effect of multiple-contaminant exposures, and that the observed mortality at Hood is due to the combination of both effluent discharge and contaminants arising from upstream of the tested sites.


Subject(s)
Ammonia/analysis , Endangered Species , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Osmeriformes/metabolism , Rivers/chemistry , Water Pollutants, Chemical/analysis , Ammonia/toxicity , Animals , California , DNA Primers/genetics , Larva/metabolism , Microarray Analysis , Polymerase Chain Reaction , Statistics, Nonparametric , Water Pollutants, Chemical/toxicity
3.
Environ Sci Technol ; 46(11): 6081-7, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22587496

ABSTRACT

The health condition of out-migrating juvenile salmonids can influence migration success. Physical damage, pathogenic infection, contaminant exposure, and immune system status can affect survival probability. The present study is part of a wider investigation of out-migration success in juvenile steelhead (Oncorhynchus mykiss) and focuses on the application of molecular profiling to assess sublethal effects of environmental stressors in field-collected fish. We used a suite of genes in O. mykiss to specifically assess responses that could be directly related to steelhead health condition during out-migration. These biomarkers were used on juvenile steelhead captured in the Snake River, a tributary of the Columbia River, in Washington, USA, and were applied on gill and anterior head kidney tissue to assess immune system responses, pathogen-defense (NRAMP, Mx, CXC), general stress (HSP70), metal-binding (metallothionein-A), and xenobiotic metabolism (Cyp1a1) utilizing quantitative polymerase chain reaction (PCR) technology. Upon capture, fish were ranked according to visual external physical conditions into good, fair, poor, and bad categories; gills and kidney tissues were then dissected and preserved for gene analyses. Transcription responses were tissue-specific for gill and anterior head kidney with less significant responses in gill tissue than in kidney. Significant differences between the condition ranks were attributed to NRAMP, MX, CXC, and Cyp1a1 responses. Gene profiling correlated gene expression with pathogen presence, and results indicated that gene profiling can be a useful tool for identifying specific pathogen types responsible for disease. Principal component analysis (PCA) further correlated these responses with specific health condition categories, strongly differentiating good, poor, and bad condition ranks. We conclude that molecular profiling is an informative and useful tool that could be applied to indicate and monitor numerous population-level parameters of management interest.


Subject(s)
Environmental Health , Environmental Monitoring , Gene Expression Profiling , Health , Oncorhynchus mykiss/genetics , Rivers , Transcription, Genetic , Animals , Cluster Analysis , Principal Component Analysis , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...