Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Infect Dis ; 5(8): 1433-1445, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31184461

ABSTRACT

The historical view of ß-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a ß-lactamase inhibitor. However, most antimycobacterial ß-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 ß-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a ß-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A ß-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent ß-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.


Subject(s)
Antitubercular Agents/pharmacology , Cephalosporins/pharmacology , DNA Replication , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Thiones/pharmacology , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Callithrix , Cephalosporins/administration & dosage , Drug Discovery , Female , Hep G2 Cells , High-Throughput Screening Assays , Humans , Mice , Mycobacterium tuberculosis/physiology , Pyridines/administration & dosage , Thiones/administration & dosage
3.
ACS Infect Dis ; 4(5): 771-787, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29465985

ABSTRACT

The success of Mycobacterium tuberculosis (Mtb) as a pathogen depends on the redundant and complex mechanisms it has evolved for resisting nitrosative and oxidative stresses inflicted by host immunity. Improving our understanding of these defense pathways can reveal vulnerable points in Mtb pathogenesis. In this study, we combined genetic, structural, computational, biochemical, and biophysical approaches to identify a novel enzyme class represented by Rv2466c. We show that Rv2466c is a mycothiol-dependent nitroreductase of Mtb and can reduce the nitro group of a novel mycobactericidal compound using mycothiol as a cofactor. In addition to its function as a nitroreductase, Rv2466c confers partial protection to menadione stress.


Subject(s)
Cysteine/metabolism , Glycopeptides/metabolism , Inositol/metabolism , Mycobacterium tuberculosis/enzymology , Nitroreductases/genetics , Nitroreductases/metabolism , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cysteine/chemistry , Disease Models, Animal , Enzyme Activation , Female , Glycopeptides/chemistry , Inositol/chemistry , Mice , Models, Molecular , Mutation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Nitroreductases/chemistry , Oxidation-Reduction , Oxidative Stress , Phylogeny , Protein Binding , Protein Conformation , Structure-Activity Relationship , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...