Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Undergrad Neurosci Educ ; 16(1): A95-A101, 2017.
Article in English | MEDLINE | ID: mdl-29371848

ABSTRACT

Flipped instruction using online enrichment is a popular way to enhance active learning in the laboratory setting. Graduate student teaching assistants at University of California, Irvine flipped an upper division undergraduate neurobiology and behavior lab using the new online software platform "Rocketmix." The following research study compares the impact of pre-lab online instruction (front flipping) and post-lab online instruction (back flipping) on student exam performance. We describe a novel method for unbiased categorization of exam questions by degree of difficulty. Multi-choice instruction encourages students to consider all distractors and discourages verbal cues and process of elimination techniques. Eighteen identical questions were evenly distributed across exam versions with multiple choice instruction (single answer) or a more challenging multi-choice instruction (more than one answer). Student performance on multiple choice questions were used to categorize the degree of difficulty of questions that were presented in multi-choice format. Our findings reveal that pre-lab instruction resulted in better student performance compared with post-lab instruction on questions of moderate difficulty. This effect was significant for both male and female students. Student survey data on the flipped lab format is provided, indicating that students appreciated the online instructional modules, finding them both informative and useful during lab exercises and exams.

2.
J Assoc Res Otolaryngol ; 17(3): 195-207, 2016 06.
Article in English | MEDLINE | ID: mdl-26993807

ABSTRACT

Listeners can perceive interleaved sequences of sounds from two or more sources as segregated streams. In humans, physical separation of sound sources is a major factor enabling such stream segregation. Here, we examine spatial stream segregation with a psychophysical measure in domestic cats. Cats depressed a pedal to initiate a target sequence of brief sound bursts in a particular rhythm and then released the pedal when the rhythm changed. The target bursts were interleaved with a competing sequence of bursts that could differ in source location but otherwise were identical to the target bursts. This task was possible only when the sources were heard as segregated streams. When the sound bursts had broad spectra, cats could detect the rhythm change when target and competing sources were separated by as little as 9.4°. Essentially equal levels of performance were observed when frequencies were restricted to a high, 4-to-25-kHz, band in which the principal spatial cues presumably were related to sound levels. When the stimulus band was restricted from 0.4 to 1.6 kHz, leaving interaural time differences as the principal spatial cue, performance was severely degraded. The frequency sensitivity of cats in this task contrasts with that of humans, who show better spatial stream segregation with low- than with high-frequency sounds. Possible explanations for the species difference includes the smaller interaural delays available to cats due to smaller sizes of their heads and the potentially greater sound-level cues available due to the cat's frontally directed pinnae and higher audible frequency range.


Subject(s)
Auditory Perception/physiology , Cats/physiology , Animals , Auditory Threshold , Cues , Perceptual Masking , Species Specificity , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...