Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(34): 18904-18911, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37602827

ABSTRACT

This work reports that the octahedral hydrated Al3+ and Mg2+ ions operate within electrolytic cells as kosmotropic (long-range order-making) "ice makers" of supercooled water (SCW). 10-5 M solutions of hydrated Al3+ and Mg2+ ions each trigger, near the cathode (-20 ± 5 V), electro-freezing of SCW at -4 °C. The hydrated Al3+ ions do so with 100% efficiency, whereas the Mg2+ ions induce icing with 40% efficiency. In contrast, hydrated Na+ ions, under the same experimental conditions, do not induce icing differently than pure water. As such, our study shows that the role played by Al3+ and Mg2+ ions in water electro-freezing is impacted by two synchronous effects: (1) a geometric effect due to the octahedral packing of the coordinated water molecules around the metallic ions, and (2) the degree of polarization which these two ions induce and thereby acidify the coordinated water molecules, which in turn imparts them with an ice-like structure. Long-duration molecular dynamics (MD) simulations of the Al3+ and Mg2+ indeed reveal the formation of "ice-like" hexagons in the vicinity of these ions. Furthermore, the MD shows that these hexagons and the electric fields of the coordinate water molecules give rise to ultimate icing. As such, the MD simulations provide a rational explanation for the order-making properties of these ions during electro-freezing.

2.
Acc Chem Res ; 55(10): 1383-1394, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35504292

ABSTRACT

ConspectusThe ability to control the icing temperature of supercooled water (SCW) is of supreme importance in subfields of pure and applied sciences. The ice freezing of SCW can be influenced heterogeneously by electric effects, a process known as electrofreezing. This effect was first discovered during the 19th century; however, its mechanism is still under debate. In this Account we demonstrate, by capitalizing on the properties of polar crystals, that heterogeneous electrofreezing of SCW is a chemical process influenced by an electric field and specific ions. Polar crystals possess a net dipole moment. In addition, they are pyroelectric, displaying short-lived surface charges at their hemihedral faces at the two poles of the crystals as a result of temperature changes. Accordingly, during cooling or heating, an electric field is created, which is negated by the attraction of compensating charges from the environment. This process had an impact in the following experiments. The icing temperatures of SCW within crevices of polar crystals are higher in comparison to icing temperatures within crevices of nonpolar analogs. The role played by the electric effect was extricated from other effects by the performance of icing experiments on the surfaces of pyroelectric quasi-amorphous SrTiO3. During those studies it was found that on positively charged surfaces the icing temperature of SCW is elevated, whereas on negatively charged surfaces it is reduced. Following investigations discovered that the icing temperature of SCW is impacted by an ionic current created within a hydrated layer on top of hydrophilic faces residing parallel to the polar axes of the crystals. In the absence of such current on analogous hydrophobic surfaces, the pyroelectric effect does not influence the icing temperature of SCW. Those results implied that electrofreezing of SCW is a process influenced by specific compensating ions attracted by the pyroelectric field from the aqueous solution. When freezing experiments are performed in an open atmosphere, bicarbonate and hydronium ions, created by the dissolution of atmospheric CO2 in water, influence the icing temperature. The bicarbonate ions, when attracted by positively charged pyroelectric surfaces, elevate the icing temperature, whereas their counterparts, hydronium ions, when attracted by the negatively charged surfaces reduce the icing temperature. Molecular dynamic simulations suggested that bicarbonate ions, concentrated within the near positively charged interfacial layer, self-assemble with water molecules to create stabilized slightly distorted "ice-like" hexagonal assemblies which mimic the hexagons of the crystals of ice. This occurs by replacing, within those ice-like hexagons, two hydrogen bonds of water by C-O bonds of the HCO3- ion. On the basis of these simulations, it was predicted and experimentally confirmed that other trigonal planar ions such as NO3-, guanidinium+, and the quasi-hexagonal biguanidinium+ ion elevate the icing temperature. These ions were coined as "ice makers". Other ions including hydronium, Cl-, and SO4-2 interfere with the formation of ice-like assemblies and operate as "ice breakers". The higher icing temperatures induced within the crevices of the hydrophobic polar crystals in comparison to the nonpolar analogs can be attributed to the proton ordering of the water molecules. In contrast, the icing temperatures on related hydrophilic surfaces are influenced both by compensating charges and by proton ordering.

3.
Angew Chem Int Ed Engl ; 59(36): 15575-15579, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32627307

ABSTRACT

Electrofreezing experiments of super-cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3 - ) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3 O+ ) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3 - ions self-assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice-like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3 - and guanidinium (Gdm+ ), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl- and SO4 2- ions of different configurations reduce the icing temperature.

4.
Angew Chem Int Ed Engl ; 59(36): 15570-15574, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32621797

ABSTRACT

By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x-cut faces of LiTaO3 , we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2 , flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...