Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 167: 107576, 2023 12.
Article in English | MEDLINE | ID: mdl-37871435

ABSTRACT

The emergence of Omicron SARS-CoV-2 subvariants (BA.1, BA.2, BA.4, and BA.5), with an unprecedented number of mutations in their receptor-binding domain (RBD) of the spike-protein, has fueled a resurgence of COVID-19 infections, posing a major challenge to the efficacy of existing vaccines and monoclonal antibody (mAb) therapeutics. We conducted a systematic molecular dynamics (MD) simulation to investigate how the RBD mutations of these subvariants affect the interactions with broad mAbs including AstraZeneca (COV2-2196 and COV2-2130), Brii Biosciences (BRII-196), Celltrion (CT-P59), Eli Lilly (LY-CoV555 and LY-CoV016), Regeneron (REGN10933 and REGN10987), Vir Biotechnology (S309), and S2X259. Our results show a complete loss of binding for COV2-2196, BRII-196, CT-P59, and LY-CoV555 with all Omicron RBDs. Additionally, REGN10987 totally loses its binding with BA.1, but retains a partial binding with BA.2 and BA.4/5. The binding reduction is significant for LY-CoV016 and REGN10933 but moderate for COV2-2130. S309 and S2X259 retain their binding with BA.1 but exhibit decreased binding with other subvariants. We introduce a mutational escape map for each mAb to identify the key RBD sites and the corresponding critical mutations. Overall, our findings suggest that the majority of therapeutic mAbs have diminished or missing activity against Omicron subvariants, indicating the urgent need for a new therapeutic mAb with a better design.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Mutation , COVID-19/genetics
2.
Biomedicines ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831053

ABSTRACT

The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the atomic-scale interactions and investigate the consequences of mutations in S-protein domains. We specifically describe the key amino acids and functions of each domain, which are essential for structural stability as well as recognition and fusion processes with the host cell; in addition, we speculate on how mutations affect these properties. Such unprecedented large-scale ab initio calculations, with up to 5000 atoms in the system, are based on the novel concept of amino acid-amino acid-bond pair unit (AABPU) that allows for an alternative description of proteins, providing valuable information on partial charge, interatomic bonding and hydrogen bond (HB) formation. In general, our results show that the S-protein mutations for different variants foster an increased positive partial charge, alter the interatomic interactions, and disrupt the HB networks. We conclude by outlining a roadmap for future computational research of biomolecular virus-related systems.

3.
Microorganisms ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36296275

ABSTRACT

The attachment of the spike protein in SARS-CoV-2 to host cells and the initiation of viral invasion are two critical processes in the viral infection and transmission in which the presence of unique furin (S1/S2) and TMPRSS2 (S2') cleavage sites play a pivotal role. We provide a detailed analysis of the impact of the BA.1 Omicron mutations vicinal to these cleavage sites using a novel computational method based on the amino acid-amino acid bond pair unit (AABPU), a specific protein structural unit as a proxy for quantifying the atomic interaction. Our study is focused mainly on the spike region between subdomain 2 (SD2) and the central helix (CH), which contains both S1/S2 and S2' cleavage sites. Based on ab initio quantum calculations, we have identified several key features related to the electronic structure and bonding of the Omicron mutations that significantly increase the size of the relevant AABPUs and the positive charge. These findings enable us to conjecture on the biological role of Omicron mutations and their specific effects on cleavage sites and identify the principles that can be of some value in analyzing new variants.

4.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077490

ABSTRACT

The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acids/genetics , Angiotensin-Converting Enzyme 2/genetics , Humans , Mutation , Protein Binding , Receptors, Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Syndactyly
5.
J Phys Chem Lett ; 13(17): 3915-3921, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35481766

ABSTRACT

The emergence of new SARS-CoV-2 Omicron variant of concern (OV) has exacerbated the COVID-19 pandemic because of a large number of mutations in the spike protein, particularly in the receptor-binding domain (RBD), resulting in highly contagious and/or vaccine-resistant strains. Herein, we present a systematic analysis based on detailed molecular dynamics (MD) simulations in order to understand how the OV RBD mutations affect the ACE2 binding. We show that the OV RBD binds to ACE2 more efficiently and tightly predominantly because of strong electrostatic interactions, thereby promoting increased infectivity and transmissibility compared to other strains. Some of the OV RBD mutations are predicted to affect the antibody neutralization either through their role in the S-protein conformational changes, such as S371L, S373P, and S375F, or through changing its surface charge distribution, such as G339D, N440K, T478K, and E484A. Other mutations, such as K417N, G446S, and Y505H, decrease the ACE2 binding, whereas S447N, Q493R, G496S, Q498R, and N501Y tend to increase it.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Int J Mol Sci ; 23(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35270013

ABSTRACT

The most recent Omicron variant of SARS-CoV-2 has caused global concern and anxiety. The only thing certain about this strain, with a large number of mutations in the spike protein, is that it spreads quickly, seems to evade immune defense, and mitigates the benefits of existing vaccines. Based on the ultra-large-scale ab initio computational modeling of the receptor binding motif (RBM) and the human angiotensin-converting enzyme-2 (ACE2) interface, we provide the details of the effect of Omicron mutations at the fundamental atomic scale level. In-depth analysis anchored in the novel concept of amino acid-amino acid bond pair units (AABPU) indicates that mutations in the Omicron variant are connected with (i) significant changes in the shape and structure of AABPU components, together with (ii) significant increase in the positive partial charge, which facilitates the interaction with ACE2. We have identified changes in bonding due to mutations in the RBM. The calculated bond order, based on AABPU, reveals that the Omicron mutations increase the binding strength of RBM to ACE2. Our findings correlate with and are instrumental to explain the current observations and can contribute to the prediction of next potential new variant of concern.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Mutation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Molecular , Pandemics/prevention & control , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , Virus Replication
7.
Viruses ; 14(3)2022 02 24.
Article in English | MEDLINE | ID: mdl-35336872

ABSTRACT

The SARS-CoV-2 Delta variant is emerging as a globally dominant strain. Its rapid spread and high infection rate are attributed to a mutation in the spike protein of SARS-CoV-2 allowing for the virus to invade human cells much faster and with an increased efficiency. In particular, an especially dangerous mutation P681R close to the furin cleavage site has been identified as responsible for increasing the infection rate. Together with the earlier reported mutation D614G in the same domain, it offers an excellent instance to investigate the nature of mutations and how they affect the interatomic interactions in the spike protein. Here, using ultra large-scale ab initio computational modeling, we study the P681R and D614G mutations in the SD2-FP domain, including the effect of double mutation, and compare the results with the wild type. We have recently developed a method of calculating the amino-acid-amino-acid bond pairs (AABP) to quantitatively characterize the details of the interatomic interactions, enabling us to explain the nature of mutation at the atomic resolution. Our most significant finding is that the mutations reduce the AABP value, implying a reduced bonding cohesion between interacting residues and increasing the flexibility of these amino acids to cause the damage. The possibility of using this unique mutation quantifiers in a machine learning protocol could lead to the prediction of emerging mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Computer Simulation , Humans , Mutation , SARS-CoV-2/genetics
8.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055023

ABSTRACT

A rational therapeutic strategy is urgently needed for combating SARS-CoV-2 infection. Viral infection initiates when the SARS-CoV-2 receptor-binding domain (RBD) binds to the ACE2 receptor, and thus, inhibiting RBD is a promising therapeutic for blocking viral entry. In this study, the structure of lead antiviral candidate binder (LCB1), which has three alpha-helices (H1, H2, and H3), is used as a template to design and simulate several miniprotein RBD inhibitors. LCB1 undergoes two modifications: structural modification by truncation of the H3 to reduce its size, followed by single and double amino acid substitutions to enhance its binding with RBD. We use molecular dynamics (MD) simulations supported by ab initio density functional theory (DFT) calculations. Complete binding profiles of all miniproteins with RBD have been determined. The MD investigations reveal that the H3 truncation results in a small inhibitor with a -1.5 kcal/mol tighter binding to RBD than original LCB1, while the best miniprotein with higher binding affinity involves D17R or E11V + D17R mutation. DFT calculations provide atomic-scale details on the role of hydrogen bonding and partial charge distribution in stabilizing the minibinder:RBD complex. This study provides insights into general principles for designing potential therapeutics for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/chemistry , Small Molecule Libraries/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Substitution , Antiviral Agents/chemistry , Computational Biology , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Structure, Secondary , Virus Internalization
9.
Polymers (Basel) ; 13(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641249

ABSTRACT

The structure and properties of the arginine-glycine-aspartate (RGD) sequence of the 1FUV peptide at 0 K and body temperature (310 K) are systematically investigated in a dry and aqueous environment using more accurate ab initio molecular dynamics and density functional theory calculations. The fundamental properties, such as electronic structure, interatomic bonding, partial charge distribution, and dielectric response function at 0 and 310 K are analyzed, comparing them in dry and solvated models. These accurate microscopic parameters determined from highly reliable quantum mechanical calculations are useful to define the range and strength of complex molecular interactions occurring between the RGD peptide and the integrin receptor. The in-depth bonding picture analyzed using a novel quantum mechanical metric, the total bond order (TBO), quantifies the role played by hydrogen bonds in the internal cohesion of the simulated structures. The TBO at 310 K decreases in the dry model but increases in the solvated model. These differences are small but extremely important in the context of conditions prevalent in the human body and relevant for health issues. Our results provide a new level of understanding of the structure and properties of the 1FUV peptide and help in advancing the study of RGD containing other peptides.

10.
Materials (Basel) ; 14(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34640170

ABSTRACT

The dielectric spectra of complex biomolecules reflect the molecular heterogeneity of the proteins and are particularly important for the calculations of electrostatic (Coulomb) and electrodynamic (van der Waals) interactions in protein physics. The dielectric response of the proteins can be decomposed into different components depending on the size, structure, composition, locality, and environment of the protein in general. We present a new robust simulation method anchored in rigorous ab initio quantum mechanical calculations of explicit atomistic models, without any indeterminate parameters to compute and gain insight into the dielectric spectra of small proteins under different conditions. We implement this methodology to a polypeptide RGD-4C (1FUV) in different environments, and the SD1 domain in the spike protein of SARS-COV-2. Two peaks at 5.2-5.7 eV and 14.4-15.2 eV in the dielectric absorption spectra are observed for 1FUV and SD1 in vacuum as well as in their solvated and salted models.

11.
J Chem Inf Model ; 61(9): 4425-4441, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428371

ABSTRACT

The spike protein of SARS-CoV-2 binds to the ACE2 receptor via its receptor-binding domain (RBD), with the RBD-ACE2 complex presenting an essential molecular target for vaccine development to stall the virus infection proliferation. The computational analyses at molecular, amino acid (AA), and atomic levels have been performed systematically to identify the key interacting AAs in the formation of the RBD-ACE2 complex for SARS-CoV and SARS-CoV-2 with its Alpha and Beta variants. Our study uses the molecular dynamics (MD) simulations with the molecular mechanics generalized Born surface area (MM-GBSA) method to predict the binding free energy (BFE) and to determine the actual interacting AAs, as well as two ab initio quantum chemical protocols based on the density functional theory (DFT) implementation. Based on MD results, Q493, Y505, Q498, N501, T500, N487, Y449, F486, K417, Y489, F456, Y495, and L455 have been identified as hotspots in SARS-CoV-2 RBD, while those in ACE2 are K353, K31, D30, D355, H34, D38, Q24, T27, Y83, Y41, and E35. RBD with Alpha and Beta variants has slightly different interacting AAs due to N501Y mutation. Both the electrostatic and hydrophobic interactions are the main driving force to form the AA-AA binding pairs. We confirm that Q493, Q498, N501, F486, K417, and F456 in RBD are the key residues responsible for the tight binding of SARS-CoV-2 with ACE2 compared to SARS-CoV. RBD with the Alpha variant binds with ACE2 stronger than the wild-type RBD or Beta. In the Beta variant, K417N reduces the binding, E484K slightly enhances it, and N501Y significantly increases it as in Alpha. The DFT results reveal that N487, Q493, Y449, T500, G496, G446, and G502 in RBD of SARS2 form pairs via specific hydrogen bonding with Q24, H34, E35, D38, Y41, Q42, and K353 in ACE2.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Density Functional Theory , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
Comput Struct Biotechnol J ; 19: 1288-1301, 2021.
Article in English | MEDLINE | ID: mdl-33623641

ABSTRACT

The COVID-19 pandemic poses a severe threat to human health with an unprecedented social and economic disruption. Spike (S) glycoprotein of the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the first contact with the ACE2 receptor in the human cell. We report results of ab initio computation of the spike protein, the largest ab initio quantum chemical computation to date on any bio-molecular system, using a divide and conquer strategy by focusing on individual structural domains. In this approach we divided the S-protein into seven structural domains: N-terminal domain (NTD), receptor binding domain (RBD), subdomain 1 (SD1), subdomain 2 (SD2), fusion peptide (FP), heptad repeat 1 with central helix (HR1-CH) and connector domain (CD). The entire Chain A has 14,488 atoms including the hydrogen atoms but excluding the amino acids with missing coordinates based on the PDB data (ID: 6VSB). The results include structural refinement, ab initio calculation of intra-molecular bonding mechanism, 3- dimensional non-local inter-amino acid interaction with implications for the inter-domain interaction. Details of the electronic structure, interatomic bonding, partial charge distribution and the role played by hydrogen bond network are discussed. In the interaction among structural domains, we present new insights for crucial hinge-like movement and fusion process. Extension of such calculation to the interface between the S-protein binding domain and ACE2 receptor can provide a pathway for computational understanding of mutations and the design of therapeutic drugs to combat the COVID-19 pandemic.

13.
J Phys Chem B ; 124(36): 7803-7818, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32786213

ABSTRACT

Doxorubicin (DOX) is a cancer drug that binds to dsDNA through intercalation. A comprehensive microsecond timescale molecular dynamics study is performed for DOX with 16 tetradecamer dsDNA sequences in explicit aqueous solvent, in order to investigate the intercalation process at both binding stages (conformational change and insertion binding stages). The molecular mechanics generalized Born surface area (MM-GBSA) method is adapted to quantify and break down the binding free energy (BFE) into its thermodynamic components, for a variety of different solution conditions as well as different DNA sequences. Our results show that the van der Waals interaction provides the largest contribution to the BFE at each stage of binding. The sequence selectivity depends mainly on the base pairs located downstream from the DOX intercalation site, with a preference for (AT)2 or (TA)2 driven by the favorable electrostatic and/or van der Waals interactions. Invoking the quartet sequence model proved to be most successful to predict the sequence selectivity. Our findings also indicate that the aqueous bathing solution (i.e., water and ions) opposes the formation of the DOX-DNA complex at every binding stage, thus implying that the complexation process preferably occurs at low ionic strength and is crucially dependent on solvent effects.


Subject(s)
DNA , Doxorubicin , Dissection , Ions , Solvents , Thermodynamics
14.
Phys Chem Chem Phys ; 21(7): 3877-3893, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30702122

ABSTRACT

The intercalation process of binding doxorubicin (DOX) in DNA is studied by extensive MD simulations. Many molecular factors that control the binding affinity of DOX to DNA to form a stable complex are inspected and quantified by employing continuum solvation models for estimating the binding free energy. The modified MM-PB(GB)SA methodology provides a complete energetic profile of ΔGele, ΔGvDW, ΔGpolar, ΔGnon-polar, TΔStotal, ΔGdeform, ΔGcon, and ΔGion. To identify the sequence specificity of DOX, two different DNA sequences, d(CGATCG) or DNA1 and d(CGTACG) or DNA2, with one molecule (1 : 1 complex) or two molecule (2 : 1 complex) configurations of DOX were selected in this study. Our results show that the DNA deformation energy (ΔGdeform), the energy cost from translational and rotational entropic contributions (TΔStran+rot), the total electrostatic interactions (ΔGpolar-PB/GB + ΔGele) of incorporation, the intramolecular electrostatic interactions (ΔGele) and electrostatic polar solvation interactions (ΔGpolar-PB/GB) are all unfavorable to the binding of DOX to DNA. However, they are overcome by at least five favorable interactions: the van der Waals interactions (ΔGvDW), the non-polar solvation interaction (ΔGnon-polar), the vibrational entropic contribution (TΔSvib), and the standard concentration dependent free energies of DOX (ΔGcon) and the ionic solution (ΔGion). Specifically, the van der Waals interaction appears to be the major driving force to form a stable DOX-DNA complex. We also predict that DOX has stronger binding to DNA1 than DNA2. The DNA deformation penalty and entropy cost in the 2 : 1 complex are less than those in the 1 : 1 complex, thus they indicate that the 2 : 1 complex is more stable than the 1 : 1 complex. We have calculated the total binding free energy (BFE) (ΔGt-sim) using both MM-PBSA and MM-GBSA methods, which suggests a more stable DOX-DNA complex at lower ionic concentration. The calculated BFE from the modified MM-GBSA method for DOX-DNA1 and DOX-DNA2 in the 1 : 1 complex is -9.1 and -5.1 kcal mol-1 respectively. The same quantities from the modified MM-PBSA method are -12.74 and -8.35 kcal mol-1 respectively. The value of the total BFE ΔGt-sim in the 1 : 1 complex is in reasonable agreement with the experimental value of -7.7 ± 0.3 kcal mol-1.


Subject(s)
DNA/chemistry , Doxorubicin/chemistry , Intercalating Agents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...