Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Vaccine ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880695

ABSTRACT

Anaplasma marginale is a tick-borne pathogen of cattle that causes bovine anaplasmosis in tropical and subtropical regions throughout the world. Killed vaccines derived from infected erythrocytes have been used for control of this disease with limited success. Recently, we described a targeted deletion mutation in the phage head-to-tail connector protein gene of A. marginale which caused bacterial attenuation in vivo and provided protection as a modified live vaccine (MLAV). Following intravenous injection of susceptible steers, the MLAV induced protective immunity against disease progression. In the current study, we demonstrated that the immunity resulting from MLAV in cattle prevents the disease progression resulting from virulent A. marginale intrastadial transmission from infected Dermacentor variabilis male ticks. The nonimmunized control steers receiving the infection from ticks developed fever, lethargy, and inappetence for several days post tick exposure with significant decreases in the packed cell volume and increases in bacteremia. In contrast, the MLAV immunized steers remained healthy after being challenged with infected ticks and this group of animals had a significant reduction in bacteremia as compared with the controls. This study demonstrated that the A. marginale MLAV provided protection against acute tick-transmitted anaplasmosis, in addition to protection documented in steers challenge-exposed with infected blood as reported previously.

2.
Front Cell Infect Microbiol ; 13: 1220025, 2023.
Article in English | MEDLINE | ID: mdl-37457955

ABSTRACT

Ehrlichia chaffeensis is a tick-transmitted monocytic ehrlichiosis agent primarily causing the disease in people and dogs. We recently described the development and characterization of 55 random mutations in E. chaffeensis, which aided in defining the critical nature of many bacterial genes for its growth in a physiologically relevant canine infection model. In the current study, we tested 45 of the mutants for their infectivity ability to the pathogen's tick vector; Amblyomma americanum. Four mutations resulted in the pathogen's replication deficiency in the tick, similar to the vertebrate host. Mutations causing growth defects in both vertebrate and tick hosts included in genes coding for a predicted alpha/beta hydrolase, a putative dicarboxylate amino acid:cation symporter, a T4SS protein, and predicted membrane-bound proteins. Three mutations caused the bacterial defective growth only in the tick vector, which represented putative membrane proteins. Ten mutations causing no growth defect in the canine host similarly grew well in the tick vector. Mutations in 28 genes/genomic locations causing E. chaffeensis growth attenuation in the canine host were recognized as non-essential for its growth in the tick vector. The tick non-essential genes included genes coding for many metabolic pathway- and outer membrane-associated proteins. This study documents novel vector- and host-specific differences in E. chaffeensis for its functional gene requirements.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Ticks , Animals , Dogs , Ticks/microbiology , Amblyomma , Ehrlichia chaffeensis/metabolism , Persistent Infection , Vertebrates , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology
3.
PLoS Pathog ; 18(5): e1010540, 2022 05.
Article in English | MEDLINE | ID: mdl-35576225

ABSTRACT

Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26-31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.


Subject(s)
Anaplasma marginale , Anaplasmosis , Cattle Diseases , Anaplasma , Anaplasma marginale/genetics , Anaplasmosis/genetics , Anaplasmosis/prevention & control , Animals , Cattle , Cattle Diseases/microbiology , Dogs , Humans , Mutagenesis , Vaccine Development , Virulence
4.
Infect Immun ; 88(10)2020 09 18.
Article in English | MEDLINE | ID: mdl-32747600

ABSTRACT

Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen's persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen's in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen's obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.


Subject(s)
Ehrlichia chaffeensis/genetics , Ehrlichiosis/microbiology , Genes, Bacterial , Animals , Bacterial Proteins/genetics , Cell Line , Dogs , Ehrlichia chaffeensis/growth & development , Ehrlichia chaffeensis/pathogenicity , Ehrlichiosis/transmission , Gene Library , Genome, Bacterial/genetics , Macrophages/microbiology , Mutagenesis, Insertional , Mutation , Ticks , Transcription, Genetic , Virulence/genetics
5.
J Asia Pac Entomol ; 21(3): 852-863, 2018 Sep.
Article in English | MEDLINE | ID: mdl-34316264

ABSTRACT

The lone star tick, Amblyomma americanum, is an obligatory ectoparasite of many vertebrates and the primary vector of Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis. This study aimed to investigate the comparative transcriptomes of A. americanum underlying the processes of pathogen acquisition and of immunity towards the pathogen. Differential expression of the whole body transcripts in six different treatments were compared: females and males that were E. chaffeensis non-exposed, E. chaffeensis-exposed/uninfected, and E. chaffeensis-exposed/infected. The Trinity assembly pipeline produced 140,574 transcripts from trimmed and filtered total raw sequence reads (approximately 117M reads). The gold transcript set of the transcriptome data was established to minimize noise by retaining only transcripts homologous to official peptide sets of Ixodes scapularis and A. americanum ESTs and transcripts covered with high enough frequency from the raw data. Comparison of the gene ontology term enrichment analyses for the six groups tested here revealed an up-regulation of genes for defense responses against the pathogen and for the supply of intracellular Ca++ for pathogen proliferation in the pathogen-exposed ticks. Analyses of differential expression, focused on functional subcategories including immune, sialome, neuropeptides, and G protein-coupled receptor, revealed that E. chaffeensis-exposed ticks exhibited an upregulation of transcripts involved in the immune deficiency (IMD) pathway, antimicrobial peptides, Kunitz, an insulin-like peptide, and bursicon receptor over unexposed ones, while transcripts for metalloprotease were down-regulated in general. This study found that ticks exhibit enhanced expression of genes responsible for defense against E. chaffeensis.

6.
Ticks Tick Borne Dis ; 8(1): 60-64, 2017 01.
Article in English | MEDLINE | ID: mdl-27729288

ABSTRACT

Monocytic ehrlichiosis in people caused by the intracellular bacterium, Ehrlichia chaffeensis, is an emerging infectious disease transmitted by the lone star tick, Amblyomma americanum. Tick transmission disease models for ehrlichiosis require at least two hosts and two tick blood feeding episodes to recapitulate the natural transmission cycle. One blood feeding is necessary for the tick to acquire the infection from an infected host and the next feeding is needed to transmit the bacterium to a naïve host. We have developed a model for E. chaffeensis transmission that eliminates the entire tick acquisition stage while still producing high numbers of infected ticks that are also able to transmit infections to naïve hosts. Fully engorged A. americanum nymphs were ventrally needle-infected, possibly into the midgut, and following molting, the unfed adult ticks were used to infect naive deer and dogs. We have also described using the ticks infected by this method the transmission of both wild-type and transposon mutants of E. chaffeensis to its primary reservoir host, white tailed deer and to another known host, dog. The infection progression and IgG antibody responses in deer were similar to those observed with transmission feeding of ticks acquiring infection by natural blood feeding. The pathogen infections acquired by natural tick transmission and by feeding needle-infected ticks on animals were also similar to intravenous infections in causing persistent infections. Needle-infected ticks having the ability to transmit pathogens will be a valuable resource to substantially simplify the process of generating infected ticks and to study infection systems in vertebrate hosts where interference of other pathogens could be avoided.


Subject(s)
Arthropod Vectors/microbiology , Deer/microbiology , Dog Diseases/microbiology , Ehrlichia chaffeensis/physiology , Ehrlichiosis/veterinary , Ixodidae/microbiology , Animals , Dog Diseases/transmission , Dogs , Ehrlichiosis/microbiology , Ehrlichiosis/transmission , Gene Expression Regulation, Bacterial , Mutation
7.
PLoS One ; 11(2): e0148229, 2016.
Article in English | MEDLINE | ID: mdl-26841025

ABSTRACT

Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Ehrlichia chaffeensis/immunology , Ehrlichiosis/veterinary , Rickettsial Vaccines/immunology , Vaccination/veterinary , Vaccines, Attenuated/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Cell Proliferation , Dogs , Ehrlichia chaffeensis/genetics , Ehrlichiosis/immunology , Ehrlichiosis/microbiology , Ehrlichiosis/prevention & control , Insect Vectors/microbiology , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Ticks/microbiology
8.
PLoS One ; 10(7): e0132657, 2015.
Article in English | MEDLINE | ID: mdl-26186429

ABSTRACT

Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.


Subject(s)
Ehrlichia chaffeensis/genetics , Gene Expression Regulation , Host Specificity/genetics , Mutation/genetics , Animals , Blotting, Southern , Deer/microbiology , Dogs/microbiology , Ehrlichiosis/blood , Ehrlichiosis/microbiology , Ehrlichiosis/veterinary , Injections , Insect Vectors/microbiology , Mutagenesis, Insertional/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Ticks/microbiology , Transcription, Genetic
9.
Infect Immun ; 83(7): 2827-35, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25916990

ABSTRACT

Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogen's clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.


Subject(s)
Bacterial Vaccines/immunology , Ehrlichia chaffeensis/immunology , Ehrlichiosis/prevention & control , Ehrlichiosis/veterinary , Animals , Bacterial Load , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Blood/microbiology , Deer , Dogs , Ehrlichia chaffeensis/genetics , Ehrlichiosis/immunology , Genes, Bacterial , Humans , Mutagenesis, Insertional , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
10.
PLoS One ; 9(10): e109056, 2014.
Article in English | MEDLINE | ID: mdl-25303515

ABSTRACT

Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.


Subject(s)
Deer/microbiology , Dogs/microbiology , Ehrlichia chaffeensis/isolation & purification , Ehrlichiosis/transmission , Ehrlichiosis/veterinary , Macrophages/microbiology , Ticks/microbiology , Animals , Arachnid Vectors/microbiology , Cell Line , Ehrlichiosis/blood , Humans
11.
PLoS Pathog ; 9(2): e1003171, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23459099

ABSTRACT

Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogen's in vivo growth.


Subject(s)
Bacterial Proteins/genetics , DNA Transposable Elements/genetics , Deer/microbiology , Ehrlichia chaffeensis/genetics , Ehrlichiosis/transmission , Mutation/genetics , Ticks/microbiology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Blotting, Southern , Cells, Cultured , Deer/genetics , Ehrlichia chaffeensis/drug effects , Ehrlichia chaffeensis/pathogenicity , Ehrlichiosis/genetics , Ehrlichiosis/veterinary , Genome, Bacterial , Humans , Macrophages/microbiology , Molecular Sequence Data , Mutagenesis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Recombination, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Ticks/genetics
12.
Vector Borne Zoonotic Dis ; 13(3): 193-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23421885

ABSTRACT

Animal models for Ehrlichia chaffeensis have been unsuccessful in recapitulating the natural disease cycle. We have developed an animal model for tick feeding and transmission using white-tailed deer (Odocoileus virgianus), the intracellular bacterium (Ehrlichia chaffeensis), and the lone star tick vector (Amblyomma americanum). Here, we report the acquisition and transmission of E. chaffeensis infections by refeeding male ticks in this experimental model. This finding is important because techniques for gene silencing are most successful for unfed adult ticks. Males are able to refeed several days after acquiring a tick-borne pathogen. Using refeeding male lone star ticks and RNA interference technology, we plan to decipher underlying molecular mechanisms involved in transmitting E. chaffeensis to a host via a lone star tick bite.


Subject(s)
Arachnid Vectors/microbiology , Deer/microbiology , Ehrlichia chaffeensis/physiology , Ehrlichiosis/transmission , Ixodidae/microbiology , Animals , Deer/parasitology , Disease Models, Animal , Ehrlichiosis/microbiology , Feeding Behavior , Humans , Male , RNA Interference
13.
Exp Appl Acarol ; 57(2): 179-87, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22476444

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine produced by many mammalian tissues. It is also found in ticks and may function to aid the tick in regulating host responses to tick feeding. Our hypothesis is that MIF functions in tick blood meal acquisition and pathogen transmission. This study was performed to understand the expression and regulation of MIF in the American dog tick, Dermacentor variabilis during early stages of blood feeding. We used quantitative reverse transcriptase PCR to study the gene expression during the first 96 h of feeding. Increases in MIF gene expression were observed in salivary gland and midgut tissues during the first 6 days of feeding. RNAi-mediated gene knockdown of D. variabilis MIF was demonstrated but we did not observe measureable phenotypic impact on blood meal acquisition in female ticks. These observations are consistent with previously published data on the lone star tick Amblyomma americanum and suggest that MIF may not have a direct impact on tick blood meal acquisition. Silencing of subolesin, a putative transcription factor, down-regulated MIF expression by 50 %.


Subject(s)
Dermacentor/physiology , Gene Expression Regulation/physiology , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Feeding Behavior/physiology , Female , Gastrointestinal Tract/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Male , RNA, Double-Stranded/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
14.
Exp Parasitol ; 130(3): 232-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22306068

ABSTRACT

We have identified and characterized the full length cDNA sequence of macrophage migration inhibitory factor (MIF) from the American dog tick, Dermacentor variabilis. The nucleotide and putative amino acid sequences from this study shared a high level of sequence conservation with other tick MIFs. The bioinformatics analysis showed across species conservation of the MIF amino acid sequence in ticks, insects and nematodes. The multiple sequence alignment identified Pro 1, 3, 55; Thr 7, 112; Asn 8, 72; Ile 64, 96; Gly 65, 110, Ser 63 and Leu 87 amino acids to be highly conserved among the sequences selected for this study. Tick MIF does not have the oxidoreductase domain as found in MIFs from other animals suggesting that tick MIF is not capable of performing as an oxidoreductase. The phylogenetic analysis revealed that tick MIFs share a closer evolutionary proximity to parasitic nematode MIFs than to insect MIFs.


Subject(s)
Arachnid Vectors/metabolism , Dermacentor/metabolism , Insecta/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Nematoda/metabolism , Amino Acid Sequence , Animals , Arachnid Vectors/classification , Arachnid Vectors/genetics , Base Sequence , Conserved Sequence , DNA, Complementary/chemistry , Dermacentor/classification , Dermacentor/genetics , Female , Insecta/classification , Insecta/genetics , Macrophage Migration-Inhibitory Factors/chemistry , Models, Molecular , Molecular Sequence Data , Nematoda/classification , Nematoda/genetics , Phylogeny , Rabbits , Sequence Alignment , Sequence Homology, Amino Acid , Sheep , Ticks/classification , Ticks/genetics , Ticks/metabolism
16.
Antimicrob Agents Chemother ; 46(10): 3118-24, 2002 10.
Article in English | MEDLINE | ID: mdl-12234833

ABSTRACT

Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics.


Subject(s)
Anti-Bacterial Agents , Enzyme Inhibitors , Oxidoreductases/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Humans , Male , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Structure-Activity Relationship
17.
J Med Chem ; 45(10): 1959-62, 2002 May 09.
Article in English | MEDLINE | ID: mdl-11985462

ABSTRACT

Potent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S. aureus rat abscess infection model.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Enterococcus/drug effects , Enzyme Inhibitors/chemical synthesis , Methionine-tRNA Ligase/antagonists & inhibitors , Quinolones/chemical synthesis , Staphylococcus/drug effects , Abscess/drug therapy , Abscess/microbiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...