Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Proc Natl Acad Sci U S A ; 88(6): 2490-4, 1991 Mar 15.
Article in English | MEDLINE | ID: mdl-2006184

ABSTRACT

Previous studies have described a dicationic anticarcinoma agent that can chemically assemble in situ from monocationic phosphonium salts. The chemical combination of these monocationic precursors in the micromolar concentration range, occurring after their uptake by cells, was probably responsible for their synergistic inhibition of cell growth and for their selective cytotoxicity to Ehrlich ascites murine carcinoma cells relative to untransformed epithelial cells. Here, we report that the dicationic product that forms in this assembly reaction is an in vitro inhibitor of protein kinase C (PKC) alpha and beta 1 isoforms, exhibiting IC50 values of 20.4 microM and 35 microM, respectively. The monocationic precursors proved to be much weaker inhibitors of PKC (IC50 values greater than 200 microM). When PKC is exposed to combinations of the two precursors, the enzymatic activity decreases steadily as a function of time. Using dose-response data and HPLC kinetic studies, we show that when the two precursor compounds are added as a combination to PKC under these conditions, the rate of formation of the inhibitory product follows the observed time course of decline in PKC activity under identical conditions. We discuss the possibility that antiproliferative effects against carcinoma cells of the preformed dication and of the combined monocationic precursors involve inhibition of PKC.


Subject(s)
Isoenzymes/antagonists & inhibitors , Organophosphorus Compounds/pharmacology , Protein Kinase C/antagonists & inhibitors , Animals , Antineoplastic Agents , Carcinoma, Ehrlich Tumor/enzymology , Isoenzymes/isolation & purification , Kinetics , Mice , Protein Binding , Protein Kinase C/isolation & purification
2.
Anticancer Drug Des ; 4(4): 265-80, 1989 Dec.
Article in English | MEDLINE | ID: mdl-2619865

ABSTRACT

Tetraphenylphosphonium cation (TPP) and other phosphonium cations selectively inhibited the growth in vitro of human pancreatic carcinoma-derived cells (PaCa-2) and Ehrlich Lettre Ascites cells (ELA) when compared with untransformed monkey kidney epithelial cells (CV-1). In contrast, neither cisplatin nor cytosine arabinoside showed significant selectivity using these lines. Evidence is presented to support the conclusion that the carcinoma-selective antiproliferative activity of phosphonium salts is due to selective accumulation caused by the abnormally high membrane potentials in carcinoma cells. Inhibition of TPP uptake into PaCa-2 and ELA cells by potassium and (for PaCa-2) valinomycin demonstrates that higher membrane potentials account for the carcinoma-selective uptake and cytostatic selectivity of the cation. For TPP chloride and 16 other phosphonium chlorides with a variety of structures, selective inhibition of PaCa-2 growth relative to CV-1 was optimal for the eight falling in a narrow range of octanol/water partition coefficients (between 0.013 and 0.24). A similar optimal selectivity range was observed for ELA cells relative to CV-1. The relationship between partition coefficients and cytostatic selectivity suggests that the rates of diffusion across cytoplasmic and mitochondrial membranes are key factors in the structure/anticarcinoma selectivity relationship for delocalized phosphonium salts in vitro. The relationship could prove useful for the design of other carcinoma-selective delocalized cations.


Subject(s)
Antineoplastic Agents/pharmacology , Onium Compounds/pharmacology , Organophosphorus Compounds/pharmacology , Animals , Cell Division/drug effects , Humans , Membrane Potentials/drug effects , Molecular Weight , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...