Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574017

ABSTRACT

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Animals , Mice , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Aflatoxin B1/toxicity , Ligands , Burkitt Lymphoma/metabolism , Chemokines , Carcinogenesis
2.
Cancers (Basel) ; 14(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35267594

ABSTRACT

Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of Epstein-Barr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBV-AFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-κB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies.

3.
J Virol ; 93(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30996097

ABSTRACT

The histone modifier lysine (K)-specific demethylase 2B (KDM2B) plays a role in the differentiation of hematopoietic cells, and its expression appears to be deregulated in certain cancers of hematological and lymphoid origins. We have previously found that the KDM2B gene is differentially methylated in cell lines derived from Epstein-Barr virus (EBV)-associated endemic Burkitt lymphoma (eBL) compared with that in EBV-negative sporadic Burkitt lymphoma-derived cells. However, whether KDM2B plays a role in eBL development has not been previously investigated. Oncogenic viruses have been shown to hijack the host cell epigenome to complete their life cycle and to promote the transformation process by perturbing cell chromatin organization. Here, we investigated whether EBV alters KDM2B levels to enable its life cycle and promote B-cell transformation. We show that infection of B cells with EBV leads to downregulation of KDM2B levels. We also show that LMP1, one of the main EBV transforming proteins, induces increased DNMT1 recruitment to the KDM2B gene and augments its methylation. By altering KDM2B levels and performing chromatin immunoprecipitation in EBV-infected B cells, we show that KDM2B is recruited to the EBV gene promoters and inhibits their expression. Furthermore, forced KDM2B expression in immortalized B cells led to altered mRNA levels of some differentiation-related genes. Our data show that EBV deregulates KDM2B levels through an epigenetic mechanism and provide evidence for a role of KDM2B in regulating virus and host cell gene expression, warranting further investigations to assess the role of KDM2B in the process of EBV-mediated lymphomagenesis.IMPORTANCE In Africa, Epstein-Barr virus infection is associated with endemic Burkitt lymphoma, a pediatric cancer. The molecular events leading to its development are poorly understood compared with those leading to sporadic Burkitt lymphoma. In a previous study, by analyzing the DNA methylation changes in endemic compared with sporadic Burkitt lymphoma cell lines, we identified several differential methylated genomic positions in the proximity of genes with a potential role in cancer, and among them was the KDM2B gene. KDM2B encodes a histone H3 demethylase already shown to be involved in some hematological disorders. However, whether KDM2B plays a role in the development of Epstein-Barr virus-mediated lymphoma has not been investigated before. In this study, we show that Epstein-Barr virus deregulates KDM2B expression and describe the underlying mechanisms. We also reveal a role of the demethylase in controlling viral and B-cell gene expression, thus highlighting a novel interaction between the virus and the cellular epigenome.


Subject(s)
Epigenesis, Genetic , Epstein-Barr Virus Infections/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Herpesvirus 4, Human/physiology , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Adolescent , Adult , B-Lymphocytes/virology , Burkitt Lymphoma/metabolism , Cell Line , Child , Child, Preschool , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA Methylation , Down-Regulation , Epstein-Barr Virus Infections/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Young Adult
4.
Epigenetics ; 12(11): 964-972, 2017.
Article in English | MEDLINE | ID: mdl-29099283

ABSTRACT

Breast cancer (BC) encompasses heterogeneous pathologies with different subtypes exhibiting distinct molecular changes, including those related to DNA methylation. However, the role of these changes in mediating BC heterogeneity is poorly understood. Lowly methylated regions (LMRs), non-CpG island loci that usually contain transcription factor (TF) binding sites, have been suggested to act as regulatory elements that define cellular identity. In this study, we aimed to identify the key subtype-specific TFs that may lead to LMR generation and shape the BC methylome and transcription program. We initially used whole-genome bisulfite sequencing (WGBS) data available at The Cancer Genome Atlas (TCGA) portal to identify subtype-specific LMRs. Differentially methylated regions (DMRs) within the BC PAM50 subtype-specific LMRs were selected by comparing tumors and normal tissues in a larger TCGA cohort assessed by HumanMethylation450 BeadChip (450K) arrays and TF enrichment analyses were performed. To assess the impact of LMRs on gene expression, TCGA RNA sequencing data were downloaded and Pearson correlations between methylation levels of loci presenting subtype-specific TF motifs and expression of the nearest genes were calculated. WGBS methylome data revealed a large number of LMRs for each of the BC subtypes. Analysis of these LMRs in the 450K datasets available for a larger sample set identified 7,765, 5,657, and 19 differentially methylated positions (DMPs) between normal adjacent tissues and tumor tissues from basal, luminal, and HER2-enriched subtypes, respectively. Unsupervised clustering showed that the discriminatory power of the top DMPs was remarkably strong for basal BC. Interestingly, in this particular subtype, we found 4,409 differentially hypomethylated positions grouped into 1,185 DMRs with a strong enrichment for the early B-cell factor 1 (EBF1) motifs. The methylation levels of the DMRs containing EBF1 motifs showed a strong negative correlation with the expression of 719 nearby genes, including BTS2 and CD74, two oncogenes known to be specific for basal BC subtype and for poor outcome. This study identifies LMRs specific to the three main BC subtypes and reveals EBF1 as a potentially important regulator of BC subtype-specific methylation and gene expression program.


Subject(s)
Breast Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Genes, Modifier , Trans-Activators/genetics , Female , Gene Expression Regulation, Neoplastic , Humans
5.
Sci Rep ; 7(1): 5852, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724958

ABSTRACT

Epstein-Barr virus (EBV) was identified as the first human virus to be associated with a human malignancy, Burkitt's lymphoma (BL), a pediatric cancer endemic in sub-Saharan Africa. The exact mechanism of how EBV contributes to the process of lymphomagenesis is not fully understood. Recent studies have highlighted a genetic difference between endemic (EBV+) and sporadic (EBV-) BL, with the endemic variant showing a lower somatic mutation load, which suggests the involvement of an alternative virally-driven process of transformation in the pathogenesis of endemic BL. We tested the hypothesis that a global change in DNA methylation may be induced by infection with EBV, possibly thereby accounting for the lower mutation load observed in endemic BL. Our comparative analysis of the methylation profiles of a panel of BL derived cell lines, naturally infected or not with EBV, revealed that the presence of the virus is associated with a specific pattern of DNA methylation resulting in altered expression of cellular genes with a known or potential role in lymphomagenesis. These included ID3, a gene often found to be mutated in sporadic BL. In summary this study provides evidence that EBV may contribute to the pathogenesis of BL through an epigenetic mechanism.


Subject(s)
Burkitt Lymphoma/genetics , Burkitt Lymphoma/virology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/physiology , Burkitt Lymphoma/pathology , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation/genetics , Down-Regulation/genetics , Gene Silencing , Humans , Inhibitor of Differentiation Proteins/metabolism , Mutation/genetics , Neoplasm Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL