Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 11(7): e471, 2021 07.
Article in English | MEDLINE | ID: mdl-34323400

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Subject(s)
Hermanski-Pudlak Syndrome/pathology , Nitric Oxide Synthase Type II/metabolism , Pulmonary Fibrosis/pathology , Receptor, Cannabinoid, CB1/metabolism , Adult , Animals , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Arachidonic Acids/metabolism , Bleomycin/adverse effects , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Endocannabinoids/metabolism , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hermanski-Pudlak Syndrome/complications , Hermanski-Pudlak Syndrome/metabolism , Humans , Interleukin-11/metabolism , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL , Middle Aged , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Polyunsaturated Alkamides/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Transforming Growth Factor beta1/metabolism
2.
PLoS Biol ; 18(1): e3000596, 2020 01.
Article in English | MEDLINE | ID: mdl-31905212

ABSTRACT

Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.


Subject(s)
Action Potentials/genetics , Learning/physiology , Memory/physiology , Motor Activity/physiology , Purkinje Cells/metabolism , Small-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Cerebellum/cytology , Cerebellum/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Reflex, Vestibulo-Ocular , Small-Conductance Calcium-Activated Potassium Channels/metabolism
3.
Am J Respir Cell Mol Biol ; 62(2): 178-190, 2020 02.
Article in English | MEDLINE | ID: mdl-31419911

ABSTRACT

ATP-binding cassette (ABC) transporters are evolutionarily conserved membrane proteins that pump a variety of endogenous substrates across cell membranes. Certain subfamilies are known to interact with pharmaceutical compounds, potentially influencing drug delivery and treatment efficacy. However, the role of drug resistance-associated ABC transporters has not been examined in idiopathic pulmonary fibrosis (IPF) or its animal model: the bleomycin (BLM)-induced murine model. Here, we investigate the expression of two ABC transporters, P-gp (permeability glycoprotein) and BCRP (breast cancer resistance protein), in human IPF lung tissue and two different BLM-induced mouse models of pulmonary fibrosis. We obtained human IPF specimens from patients during lung transplantation and administered BLM to male C57BL/6J mice either by oropharyngeal aspiration (1 U/kg) or subcutaneous osmotic infusion (100 U/kg over 7 d). We report that P-gp and BCRP expression in lungs of patients with IPF was comparable to controls. However, murine lungs expressed increased levels of P-gp and BCRP after oropharyngeal and subcutaneous BLM administration. We localized this upregulation to multiple pulmonary cell types, including alveolar fibroblasts, endothelial cells, and type 2 epithelial cells. Functionally, this effect reduced murine lung exposure to nintedanib, a U.S. Food and Drug Administration-approved IPF therapy known to be a P-gp substrate. The study reveals a discrepancy between IPF pathophysiology and the common animal model of lung fibrosis. BLM-induced drug efflux in the murine lungs may present an uncontrolled confounding variable in the preclinical study of IPF drug candidates, and these findings will facilitate disease model validation and enhance new drug discoveries that will ultimately improve patient outcomes.


Subject(s)
Bleomycin/pharmacology , Endothelial Cells/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , ATP Binding Cassette Transporter, Subfamily G, Member 2/drug effects , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Male , Mice, Inbred C57BL , Neoplasm Proteins/drug effects , Neoplasm Proteins/metabolism
4.
Sci Transl Med ; 10(472)2018 12 19.
Article in English | MEDLINE | ID: mdl-30545965

ABSTRACT

A number of studies indicate that rare copy number variations (CNVs) contribute to the risk of schizophrenia (SCZ). Most of these studies have focused on protein-coding genes residing in the CNVs. Here, we investigated long noncoding RNAs (lncRNAs) within 10 SCZ risk-associated CNV deletion regions (CNV-lncRNAs) and examined their potential contribution to SCZ risk. We used RNA sequencing transcriptome data derived from postmortem brain tissue from control individuals without psychiatric disease as part of the PsychENCODE BrainGVEX and Developmental Capstone projects. We carried out weighted gene coexpression network analysis to identify protein-coding genes coexpressed with CNV-lncRNAs in the human brain. We identified one neuronal function-related coexpression module shared by both datasets. This module contained a lncRNA called DGCR5 within the 22q11.2 CNV region, which was identified as a hub gene. Protein-coding genes associated with SCZ genome-wide association study signals, de novo mutations, or differential expression were also contained in this neuronal module. Using DGCR5 knockdown and overexpression experiments in human neural progenitor cells derived from human induced pluripotent stem cells, we identified a potential role for DGCR5 in regulating certain SCZ-related genes.


Subject(s)
Gene Expression Regulation , RNA, Long Noncoding/metabolism , Schizophrenia/genetics , Adult , Brain/pathology , DNA Copy Number Variations/genetics , Humans , Molecular Sequence Annotation , Open Reading Frames/genetics , RNA, Long Noncoding/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...