Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 8616535, 2022.
Article in English | MEDLINE | ID: mdl-35993045

ABSTRACT

The second largest cause of mortality worldwide is breast cancer, and it mostly occurs in women. Early diagnosis has improved further treatments and reduced the level of mortality. A unique deep learning algorithm is presented for predicting breast cancer in its early stages. This method utilizes numerous layers to retrieve significantly greater amounts of information from the source inputs. It could perform automatic quantitative evaluation of complicated image properties in the medical field and give greater precision and reliability during the diagnosis. The dataset of axillary lymph nodes from the breast cancer patients was collected from Erasmus Medical Center. A total of 1050 images were studied from the 850 patients during the years 2018 to 2021. For the independent test, data samples were collected for 100 images from 95 patients at national cancer institute. The existence of axillary lymph nodes was confirmed by pathologic examination. The feed forward, radial basis function, and Kohonen self-organizing are the artificial neural networks (ANNs) which are used to train 84% of the Erasmus Medical Center dataset and test the remaining 16% of the independent dataset. The proposed model performance was determined in terms of accuracy (Ac), sensitivity (Sn), specificity (Sf), and the outcome of the receiver operating curve (Roc), which was compared to the other four radiologists' mechanism. The result of the study shows that the proposed mechanism achieves 95% sensitivity, 96% specificity, and 98% accuracy, which is higher than the radiologists' models (90% sensitivity, 92% specificity, and 94% accuracy). Deep learning algorithms could accurately predict the clinical negativity of axillary lymph node metastases by utilizing images of initial breast cancer patients. This method provides an earlier diagnostic technique for axillary lymph node metastases in patients with medically negative changes in axillary lymph nodes.


Subject(s)
Breast Neoplasms , Deep Learning , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Female , Humans , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Reproducibility of Results , Sensitivity and Specificity
2.
Biomed Res Int ; 2022: 2632770, 2022.
Article in English | MEDLINE | ID: mdl-35782065

ABSTRACT

Coronary artery calcification (CAC) could assist in the discovery of new risk elements for coronary artery disorder. CAC evaluation, on the other hand, is difficult due to the wide range of CAC in the populations. As a reason, evaluating and analysing data among research have become complicated. In the Research of Inherited Risk Factors for Coronary Atherosclerosis, we used CAC information to test the effects of different analytical methodologies on the correlation with recognized cardiovascular risk elements in asymptomatic patients. Cardiac computed tomography (CT) is also seeing an increase in examinations, and machine learning (ML) could assist with the growing amount of extracted data. Furthermore, there are other sectors in cardiac CT where machine learning could be crucial, including coronary calcium scoring, perfusion, and CT angiography. The establishment of risk evaluation algorithms based on information from CAC utilizing machine learning could assist in the categorization of patients undergoing cardiovascular into distinct risk groups and effectively adapt their treatments to their unique situations. Our findings imply that for forecasting CVD occurrences in asymptomatic people, age-sex segmentation by CAC percentile rank is as effective as absolute CAC scoring. Longitudinal population-based investigations are currently underway and would offer further definitive findings. While machine learning is a strong technology with a lot of possibilities, its implementations in the domain of cardiac CAC are generally in the early stages of development and are not currently commonly accessible in medical practise because of the requirement for substantial verification. Enhanced machine learning will, however, have a significant effect on cardiovascular and coronary artery calcification in the upcoming years.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Heart Disease Risk Factors , Humans , Machine Learning , Risk Factors
3.
Biomed Res Int ; 2022: 1293548, 2022.
Article in English | MEDLINE | ID: mdl-35769667

ABSTRACT

In this paper, we develop a detection module with strong training testing to develop a dense convolutional neural network model. The model is designed in such a way that it is trained with necessary features for optimal modelling of the cancer detection. The method involves preprocessing of computerized tomography (CT) images for optimal classification at the testing stages. A 10-fold cross-validation is conducted to test the reliability of the model for cancer detection. The experimental validation is conducted in python to validate the effectiveness of the model. The result shows that the model offers robust detection of cancer instances that novel approaches on large image datasets. The simulation result shows that the proposed method provides analyzes with 94% accuracy than other methods. Also, it helps to reduce the detection errors while classifying the cancer instances than other methods the several existing methods.


Subject(s)
Neoplasms , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Reproducibility of Results , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL