Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 81(11): 3688-98, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25795678

ABSTRACT

In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.


Subject(s)
Aspergillus/physiology , Edible Grain/microbiology , Flavoring Agents/metabolism , Glucosylceramides/metabolism , Membranes/drug effects , Saccharomyces cerevisiae/physiology , Stress, Physiological/drug effects , Aspergillus/growth & development , Aspergillus/metabolism , Edible Grain/metabolism , Ethanol/metabolism , Fermentation , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
2.
Appl Environ Microbiol ; 80(3): 1002-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24271183

ABSTRACT

Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.


Subject(s)
Ethanol/metabolism , Mitophagy , Saccharomyces cerevisiae/physiology , Autophagy-Related Proteins , Carbon Dioxide/metabolism , Fermentation , Gene Knockout Techniques , Receptors, Cytoplasmic and Nuclear/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...