Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cognition ; 235: 105408, 2023 06.
Article in English | MEDLINE | ID: mdl-36893523

ABSTRACT

Event boundaries and temporal context shape the organization of episodic memories. We hypothesized that attentional fluctuations during encoding serve as "events" that affect temporal context representations and recall organization. Individuals encoded trial-unique objects during a modified sustained attention task. Memory was tested with free recall. Response time variability during the encoding tasks was used to characterize "in the zone" and "out of the zone" attentional states. We predicted that: 1) "in the zone", vs. "out of the zone", attentional states should be more conducive to maintaining temporal context representations that can cue temporally organized recall; and 2) temporally distant "in the zone" states may enable more recall "leaps" across intervening items. We replicated several important findings in the sustained attention and memory fields, including more online errors during "out of the zone" vs. "in the zone" attentional states and recall that was temporally structured. Yet, across four studies, we found no evidence for either of our main hypotheses. Recall was robustly temporally organized, and there was no difference in recall organization for items encoded "in the zone" vs. "out of the zone". We conclude that temporal context serves as a strong scaffold for episodic memory, one that can support organized recall even for items encoded during relatively poor attentional states. We also highlight the numerous challenges in striking a balance between sustained attention tasks (long blocks of a repetitive task) and memory recall tasks (short lists of unique items) and describe strategies for researchers interested in uniting these two fields.


Subject(s)
Memory, Episodic , Mental Recall , Humans , Mental Recall/physiology , Attention/physiology , Reaction Time
2.
Neurology ; 96(10): e1470-e1481, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33408146

ABSTRACT

OBJECTIVE: To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF ß-amyloid (Aß)42/Aß40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS: CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aß42, Aß40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS: Age and lower Aß42/Aß40 were independently associated with elevated p-tau181. Age, Aß42/Aß40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aß42/Aß40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aß42 was not significantly associated with p-tau181 or memory. CONCLUSIONS: Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Hippocampus/physiopathology , Memory Disorders/cerebrospinal fluid , Memory Disorders/psychology , Aged , Aged, 80 and over , Aging/psychology , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Association Learning , Cross-Sectional Studies , Cues , Discrimination, Psychological , Female , Humans , Male , Memory , Memory Disorders/physiopathology , Memory, Episodic , Mental Recall , Middle Aged , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Psychomotor Performance , tau Proteins/cerebrospinal fluid
3.
Neuropsychologia ; 146: 107537, 2020 09.
Article in English | MEDLINE | ID: mdl-32569610

ABSTRACT

Prior fMRI studies have reported relationships between memory-related activity in the hippocampus and in-scanner memory performance, but whether such activity is predictive of longitudinal memory change remains unclear. Here, we administered a neuropsychological test battery to a sample of cognitively healthy older adults on three occasions, the second and third sessions occurring one month and three years after the first session. Structural and functional MRI data were acquired between the first two sessions. The fMRI data were derived from an associative recognition procedure and allowed estimation of hippocampal effects associated with both successful associative encoding and successful associative recognition (recollection). Baseline memory performance and memory change were evaluated using memory component scores derived from a principal components analysis of the neuropsychological test scores. Across participants, right hippocampal encoding effects correlated significantly with baseline memory performance after controlling for chronological age. Additionally, both left and right hippocampal associative recognition effects correlated negatively with longitudinal memory decline after controlling for age, and the relationship with the left hippocampal effect remained after also controlling for left hippocampal volume. Thus, in cognitively healthy older adults, the magnitude of hippocampal recollection effects appears to be a robust predictor of future memory change.


Subject(s)
Aging/physiology , Hippocampus/physiology , Hippocampus/physiopathology , Magnetic Resonance Imaging , Memory/physiology , Aged , Female , Hippocampus/diagnostic imaging , Humans , Male , Mental Recall/physiology , Middle Aged , Neuropsychological Tests , Recognition, Psychology/physiology
4.
Elife ; 92020 05 29.
Article in English | MEDLINE | ID: mdl-32469308

ABSTRACT

Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within- and across-individual memory variability in older adults.


Subject(s)
Aging/physiology , Cerebral Cortex/physiology , Hippocampus/physiology , Memory, Episodic , Aged , Aged, 80 and over , Cerebral Cortex/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Mental Recall/physiology , Middle Aged
5.
Neuropsychologia ; 138: 107328, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31887313

ABSTRACT

Why do we sometimes easily retrieve memories, but other times appear to forget them? We often look to our external environment for retrieval cues, but another way to optimize memory retrieval is to be in a mental state, or mode, that prioritizes access to our internal representation of the world. Such a 'retrieval mode' was proposed by Endel Tulving (1983), who considered it a neurocognitive state in which one keeps the goal of memory retrieval in mind. Building on Tulving's proposal, we review converging evidence from multiple lines of research that emphasize the importance of internal states in the instantiation of retrieval modes that optimize successful remembering. We identify three key factors that contribute to a retrieval mode by modulating either the likelihood or the content of retrieval: (1) an intention to remember or forget (either in the present or the future), (2) attentional selection of goal-relevant memories and suppression of distractors, and (3) fluctuating levels of acetylcholine in the hippocampus. We discuss empirical evidence that these internal states individually influence memory retrieval and propose how they may interact synergistically. Characterizing these dynamic internal factors is an important key for unlocking our understanding of the organization and accessibility of our memories.


Subject(s)
Acetylcholine/physiology , Attention/physiology , Goals , Hippocampus/metabolism , Intention , Mental Recall/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...