Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12692, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830877

ABSTRACT

Here, we explore the application of Raman spectroscopy for the assessment of plant biodiversity. Raman spectra from 11 vascular plant species commonly found in forest ecosystems, specifically angiosperms (both monocots and eudicots) and pteridophytes (ferns), were acquired in vivo and in situ using a Raman leaf-clip. We achieved an overall accuracy of 91% for correct classification of a species within a plant group and identified lignin Raman spectral features as a useful discriminator for classification. The results demonstrate the potential of Raman spectroscopy in contributing to plant biodiversity assessment.


Subject(s)
Biodiversity , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Plants/chemistry , Plants/classification , Plant Leaves/chemistry , Lignin/analysis
2.
Biomolecules ; 13(10)2023 10 18.
Article in English | MEDLINE | ID: mdl-37892222

ABSTRACT

In the agricultural industry, the post-harvest leafy vegetable quality and shelf life significantly influence market value and consumer acceptability. This study examined the effects of different storage temperatures on leaf senescence, nitrogen assimilation, and remobilization in Pak Choi (Brassica rapa subsp. chinensis). Mature Pak Choi plants were harvested and stored at two different temperatures, 4 °C and 25 °C. Senescence was tracked via chlorophyll content and leaf yellowing. Concurrently, alterations in the total nitrogen, nitrate, and protein content were quantified on days 0, 3, 6, and 9 in old, mid, and young leaves of Pak Choi plants. As expected, 4 °C alleviated chlorophyll degradation and delayed senescence of Pak Choi compared to 25 °C. Total nitrogen and protein contents were inversely correlated, while the nitrate content remained nearly constant across leaf groups at 25 °C. Additionally, the transcript levels of genes involved in nitrogen assimilation and remobilization revealed key candidate genes that were differentially expressed between 4 °C and 25 °C, which might be targeted to extend the shelf life of the leafy vegetables. Thus, this study provides pivotal insights into the molecular and physiological responses of Pak Choi to post-harvest storage conditions.


Subject(s)
Brassica rapa , Nitrates , Temperature , Nitrates/metabolism , Nitrogen/metabolism , Brassica rapa/genetics , Brassica rapa/metabolism , Vegetables , Chlorophyll/metabolism
3.
Front Plant Sci ; 13: 982247, 2022.
Article in English | MEDLINE | ID: mdl-36119609

ABSTRACT

Quantifying the phenolic compounds in plants is essential for maintaining the beneficial effects of plants on human health. Existing measurement methods are destructive and/or time consuming. To overcome these issues, research was conducted to develop a non-destructive and rapid measurement of phenolic compounds using hyperspectral imaging (HSI) and machine learning. In this study, the Arabidopsis was used since it is a model plant. They were grown in controlled and various stress conditions (LED lights and drought). Images were captured using HSI in the range of 400-1,000 nm (VIS/NIR) and 900-2,500 nm (SWIR). Initially, the plant region was segmented, and the spectra were extracted from the segmented region. These spectra were synchronized with plants' total phenolic content reference value, which was obtained from high-performance liquid chromatography (HPLC). The partial least square regression (PLSR) model was applied for total phenolic compound prediction. The best prediction values were achieved with SWIR spectra in comparison with VIS/NIR. Hence, SWIR spectra were further used. Spectral dimensionality reduction was performed based on discrete cosine transform (DCT) coefficients and the prediction was performed. The results were better than that of obtained with original spectra. The proposed model performance yielded R 2-values of 0.97 and 0.96 for calibration and validation, respectively. The lowest standard errors of predictions (SEP) were 0.05 and 0.07 mg/g. The proposed model out-performed different state-of-the-art methods. These demonstrate the efficiency of the model in quantifying the total phenolic compounds that are present in plants and opens a way to develop a rapid measurement system.

4.
Plants (Basel) ; 11(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35406816

ABSTRACT

The increasing interest in plant phenolic compounds in the past few years has become necessary because of their several important physicochemical properties. Thus, their identification through non-destructive methods has become crucial. This study carried out comparative non-destructive measurements of Arabidopsis thaliana leaf powder sample phenolic compounds using Fourier-transform infrared and near-infrared spectroscopic techniques under six distinct stress conditions. The prediction analysis of 600 leaf powder samples under different stress conditions (LED lights and drought) was performed using PLSR, PCR, and NAS-based HLA/GO regression analysis methods. The results obtained through FT-NIR spectroscopy yielded the highest correlation coefficient (Rp2) value of 0.999, with a minimum error (RMSEP) value of 0.003 mg/g, based on the PLSR model using the MSC preprocessing method, which was slightly better than the correlation coefficient (Rp2) value of 0.980 with an error (RMSEP) value of 0.055 mg/g for FT-IR spectroscopy. Additionally, beta coefficient plots present spectral differences and the identification of important spectral signatures sensitive to the phenolic compounds in the measured powdered samples. Thus, the obtained results demonstrated that FT-NIR spectroscopy combined with partial least squares regression (PLSR) and suitable preprocessing method has a solid potential for non-destructively predicting phenolic compounds in Arabidopsis thaliana leaf powder samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...