Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(15): 3227-3244.e20, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37339632

ABSTRACT

Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.


Subject(s)
Protein Biosynthesis , Ribosomes , Animals , Ribosomes/metabolism , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Terminator/metabolism , Mammals/metabolism
2.
Article in English | MEDLINE | ID: mdl-30833457

ABSTRACT

Cells invest in an extensive network of factors to maintain protein homeostasis (proteostasis) and prevent the accumulation of potentially toxic protein aggregates. This proteostasis network (PN) comprises the machineries for the biogenesis, folding, conformational maintenance, and degradation of proteins with molecular chaperones as central coordinators. Here, we review recent progress in understanding the modular architecture of the PN in mammalian cells and how it is modified during cell differentiation. We discuss the capacity and limitations of the PN in maintaining proteome integrity in the face of proteotoxic stresses, such as aggregate formation in neurodegenerative diseases. Finally, we outline various pharmacological interventions to ameliorate proteostasis imbalance.


Subject(s)
Molecular Chaperones/chemistry , Neurodegenerative Diseases/metabolism , Proteins/chemistry , Proteostasis/physiology , Animals , Cell Differentiation , Homeostasis , Humans , Protein Conformation , Protein Denaturation , Protein Folding , Proteome/metabolism , Thermodynamics
3.
Biochemistry ; 54(48): 7067-78, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26554903

ABSTRACT

The biological role of the existence of overlapping structures in RNA is possible yet remains very unexplored. G-Rich tracts of RNA form G-quadruplexes, while GC-rich sequences prefer stem-loop structures. The equilibrium between alternate structures within RNA may occur and influence its functionality. We tested the equilibrium between G-quadruplex and stem-loop structure in RNA and its effect on biological processes using pre-miRNA as a model system. Dicer enzyme recognizes canonical stem-loop structures in pre-miRNA to produce mature miRNAs. Deviation from stem-loop leads to deregulated mature miRNA levels, providing readout of the existence of an alternate structure per se G-quadruplex-mediated structural interference in miRNA maturation. In vitro analysis using beacon and Dicer cleavage assays indicated that mature miRNA levels depend on relative amounts of K(+) and Mg(2+) ions, suggesting an ion-dependent structural shift. Further in cellulo studies with and without TmPyP4 (RNA G-quadruplex destabilizer) demonstrated that miRNA biogenesis is modulated by G-quadruplex to stem-loop equilibrium in a subset of pre-miRNAs. Our combined analysis thus provides evidence of the formation of noncanonical G-quadruplexes in competition with canonical stem-loop structure inside the cell and its effect on miRNA maturation in a comprehensive manner.


Subject(s)
G-Quadruplexes , MicroRNAs/chemistry , MicroRNAs/metabolism , Ribonuclease III/metabolism , Base Sequence , Gene Expression Regulation , Humans , MCF-7 Cells , MicroRNAs/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Ribonuclease T1/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...