Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(12): e115082, 2014.
Article in English | MEDLINE | ID: mdl-25521390

ABSTRACT

Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1 ribosylation. Absent from the enzymatic and chemical glycosylations is the natural pattern of N3 ribosylation, verified by comparison of spectroscopic and chromatographic properties with an authentic standard synthesized by an unambiguous route.


Subject(s)
Escherichia coli Proteins/chemistry , Guanine/analogs & derivatives , Pentosyltransferases/chemistry , Amino Acid Sequence , Catalytic Domain , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Glycosylation , Guanine/chemistry , Guanine/metabolism , Lactobacillus/enzymology , Molecular Sequence Data , Pentosyltransferases/metabolism , Substrate Specificity
2.
J Environ Monit ; 10(4): 500-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18385871

ABSTRACT

Respiratory sensitization and occupational asthma are associated with exposure to 1,6-hexamethylene diisocyanate (HDI) in both monomeric and oligomeric forms. The monomer and polymers of diisocyanates differ significantly in their rates of absorption into tissue and their toxicity, and hence may differ in their contribution to sensitization. We have developed and evaluated a liquid chromatography/mass spectrometry (LC-MS) method capable of quantifying HDI and its oligomers (uretidone, biuret, and isocyanurate) in air, tape-stripped skin, and paint samples collected in the automotive refinishing industry. To generate analytical standards, urea derivatives of HDI, biuret, and isocyanurate were synthesized by reaction with 1-(2-methoxyphenyl)piperazine and purified. The urea derivatives were shown to degrade on average by less than 2% per week at -20 degrees C over a 2 month period in occupational samples. The average recovery of HDI and its oligomers from tape was 100% and the limits of detection were 2 and 8 fmol microl(-1), respectively. Exposure assessments were performed on 13 automotive spray painters to evaluate the LC-MS method and the sampling methods under field conditions. Isocyanurate was the most abundant component measured in paint tasks, with median air and skin concentrations of 2.4 mg m(-3) and 4.6 microg mm(-3), respectively. Log-transformed concentrations of HDI (r = 0.79, p < 0.0001) and of isocyanurate (r = 0.71, p < 0.0001) in the skin of workers were correlated with the log-transformed product of air concentration and painting time. The other polyisocyanates were detected on skin for less than 25% of the paint tasks. This LC-MS method provides a valuable tool to investigate inhalation and dermal exposures to specific polyisocyanates and to explore relative differences in the exposure pathways.


Subject(s)
Cyanates/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Paint/analysis , Polymers/analysis , Workplace/standards , Administration, Cutaneous , Chromatography, Liquid , Humans , Isocyanates , Mass Spectrometry
3.
Chem Res Toxicol ; 21(4): 852-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18361511

ABSTRACT

To measure biomarkers of skin exposure to ubiquitous industrial and environmental aromatic hydrocarbons, we sought to develop an ELISA to quantitate protein adducts of metabolites of benzene and naphthalene in the skin of exposed individuals. We hypothesized that electrophilic arene oxides formed by CYP isoforms expressed in the human skin react with nucleophilic sites on keratin, the most abundant protein in the stratum corneum that is synthesized de novo during keratinocyte maturation and differentiation. The sulfhydryl groups of cysteines in the head region of the keratin proteins 1 (K1) and 10 (K10) are likely targets. The following synthetic S-arylcysteines were incorporated into 10-mer head sequences of K1 [GGGRFSS( S-aryl-C)GG] and K10 [GGGG( S-aryl-C)GGGGG] to form the predicted immunogenic epitopes for antibody production for ELISA: S-phenylcysteine-K1 (SPK1), S-phenylcysteine-K10 (SPK10), S-(1-naphthyl)cysteine-K1 (1NK1), S-(1-naphthyl)cysteine-K10 (1NK10), S-(2-naphthyl)cysteine-K1 (2NK1), and S-(2-naphthyl)cysteine-K10 (2NK10). Analysis by ELISA was chosen based on its high throughput and sensitivity, and low cost. The synthetic modified oligopeptides, available in quantity, served both as immunogens and as chemical standards for quantitative ELISA. Polyclonal rabbit antibodies produced against the naphthyl-modified keratins reacted with their respective antigens with threshold sensitivities of 15-31 ng/mL and high specificity over a linear range up to 500 ng/mL. Anti- S-phenylcysteine antibodies were not sufficiently specific or sensitive toward the target antigens for use in ELISA under our experimental conditions. In dermal tape-strip samples collected from 13 individuals exposed to naphthalene-containing jet fuel, naphthyl-conjugated peptides were detected at levels from 0.343 +/- 0.274 to 2.34 +/- 1.61 pmol adduct/microg keratin but were undetectable in unexposed volunteers. This is the first report of adducts of naphthalene (or of any polycyclic aromatic hydrocarbon) detected in the exposed intact human skin. Quantitation of naphthyl-keratin adducts in the skin of exposed individuals will allow us to investigate the importance of dermal penetration, metabolism, and adduction to keratin and to predict more accurately the contribution of dermal exposure to systemic dose for use in exposure and risk-assessment models.


Subject(s)
Benzene , Cysteine/metabolism , Keratins/metabolism , Naphthalenes , Occupational Exposure , Adult , Aircraft , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Skin
4.
Chem Biol Interact ; 166(1-3): 219-25, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-16860298

ABSTRACT

Butadiene (BD) metabolism shows gender, species and concentration dependency, making the extrapolation of animal results to humans complex. BD is metabolized mainly by cytochrome P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-butanediol (EB-diol). For accurate risk assessment it is important to elucidate species differences in the internal formation of the individual epoxides in order to assign the relative risks associated with their different mutagenic potencies. Analysis of N-terminal globin adducts is a common approach for monitoring the internal formation of BD derived epoxides. Our long term strategy is to develop an LC-MS/MS method for simultaneous detection of all three BD hemoglobin adducts. This approach is modeled after the recently reported immunoaffinity LC-MS/MS method for the cyclic N,N-(2,3-dihydroxy-1,4-butadyil)-valine (pyr-Val, derived from DEB). We report herein the analysis of the EB-derived 2-hydroxyl-3-butenyl-valine peptide (HB-Val). The procedure utilizes trypsin hydrolysis of globin and immunoaffinity (IA) purification of alkylated heptapeptides. Quantitation is based on LC-MS/MS monitoring of the transition from the singly charged molecular ion of HB-Val (1-7) to the a(1) fragment. Human HB-Val (1-11) was synthesized and used for antibody production. As internal standard, the labeled rat-[(13)C(5)(15)N]-Val (1-11) was prepared through direct alkylation of the corresponding peptide with EB. Standards were characterized and quantified by LC-MS/MS and LC-UV. The method was validated with different amounts of human HB-Val standard. The recovery was >75% and coefficient of variation <25%. The LOQ was set to 100 fmol/injection. For a proof of principal experiment, globin samples from male and female rats exposed to 1000 ppm BD for 90 days were analyzed. The amounts of HB-Val present were 268.2+/-56 and 350+/-70 pmol/g (mean+/-S.D.) for males and females, respectively. No HB-Val was detected in controls. These data are much lower compared to previously reported values measured by GC-MS/MS. The difference may be due higher specificity of the LC-MS/MS method to the N-terminal peptide from the alpha-chain versus derivatization of both alpha- and beta-chain by Edman degradation, and possible instability of HB-Val adducts during long term storage (about 10 years) between the analyses. These differences will be resolved by examining recently collected samples, using the same internal standard for parallel analysis by GC-MS/MS and LC-MS/MS. Based on our experience with pyr-Val adduct assay we anticipate that this assay will be suitable for evaluation of HB-Val in multiple species.


Subject(s)
Epoxy Compounds/analysis , Hemoglobins/analysis , Peptides/analysis , Valine/analysis , Animals , Butadienes/metabolism , Calibration , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Reference Standards , Sex Characteristics
5.
Scand J Work Environ Health ; 32(3): 225-40, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16804626

ABSTRACT

OBJECTIVES: This study describes the development and evaluation of a method for sampling layers of the stratum corneum for the quantitation of dermal exposure to 1,6-hexamethylene diisocyanate (HDI). METHODS: HDI deposited on skin was collected by the removal of stratum corneum with adhesive tape, derivatized with 1-(2-methoxyphenyl)piperazine, and quantitated as the urea derivative (HDIU) by liquid chromatography-mass spectrometry (LC-MS). This LC-MS method was tested by analyzing tape spiked with HDI-containing products, then applied to tape samples collected from the skin of an auto-body shop worker exposed to polyurethane paint aerosols. RESULTS: The limits of detection and quantitation were 20 and 50 fmol per injection, respectively. The recovery of HDI from the tape was 99.3% [95% confidence interval (95% CI) 97.1-102]. HDIU was stable at -40 degrees C, degrading by 0.28% (95% CI 0.10-0.46) per day. Quantifiable amounts of HDI were observed in 42.6% of the first three successive tape-strip samples collected from 36 different sites on the skin of the worker. The amount of HDI recovered from the collection sites on skin, measured by summing the levels collected with three successive tape-strips, ranged from nondetectable to 1874 pmol. CONCLUSIONS: This study demonstrates that HDI on skin can be collected with tape-strips and quantified at occupational levels using LC-MS.


Subject(s)
Cyanates/toxicity , Occupational Exposure , Skin/drug effects , Chromatography, Liquid , Humans , Isocyanates , Mass Spectrometry , Reference Standards , Sensitivity and Specificity
6.
Cancer Res ; 64(23): 8517-20, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15574756

ABSTRACT

1,3-Butadiene is an important industrial chemical used in the production of synthetic rubber and is also found in gasoline and combustion products. It is a multispecies, multisite carcinogen in rodents, with mice being the most sensitive species. 1,3-Butadiene is metabolized to several epoxides that form DNA and protein adducts. Previous analysis of 1,2,3-trihydroxybutyl-valine globin adducts suggested that most adducts resulted from 3-butene-1,2-diol metabolism to 3,4-epoxy-1,2-butanediol, rather than from 1,2;3,4-diepoxybutane. To specifically examine metabolism of 1,3-butadiene to 1,2;3,4-diepoxybutane, the formation of the 1,2;3,4-diepoxybutane-specific adduct N,N-(2,3-dihydroxy-1,4-butadiyl)-valine was evaluated in mice treated with 3, 62.5, or 1250 ppm 1,3-butadiene for 10 days and rats exposed to 3 or 62.5 ppm 1,3-butadiene for 10 days, or to 1000 ppm 1,3-butadiene for 90 days, using a newly developed immunoaffinity liquid chromatography tandem mass spectrometry assay. In addition, 2-hydroxy-3-butenyl-valine and 1,2,3-trihydroxybutyl-valine adducts were determined. The analyses of several adducts derived from 1,3-butadiene metabolites provided new insight into species and exposure differences in 1,3-butadiene metabolism. Mice formed much higher amounts of N,N-(2,3-dihydroxy-1,4-butadiyl)-valine than rats. The formation of 2-hydroxy-3-butenyl-valine and N,N-(2,3-dihydroxy-1,4-butadiyl)-valine was similar in mice exposed to 3 or 62.5 ppm 1,3-butadiene, whereas 2-hydroxy-3-butenyl-valine was 3-fold higher at 1250 ppm. In both species, 1,2,3-trihydroxybutyl-valine adducts were much higher than 2-hydroxy-3-butenyl-valine and N,N-(2,3-dihydroxy-1,4-butadiyl)-valine. Together, these data show that 1,3-butadiene is primarily metabolized via the 3-butene-1,2-diol pathway, but that mice are much more efficient at forming 1,2;3,4-diepoxybutane than rats, particularly at low exposures. This assay should also be readily adaptable to molecular epidemiology studies on 1,3-butadiene-exposed workers.


Subject(s)
Butadienes/metabolism , Carcinogens/metabolism , Epoxy Compounds/metabolism , Globins/metabolism , Valine/analogs & derivatives , Amino Acid Sequence , Animals , Butadienes/toxicity , Carcinogens/toxicity , Chromatography, Liquid , Female , Globins/analysis , Humans , Inhalation Exposure , Mass Spectrometry , Mice , Pyrrolidines/analysis , Pyrrolidines/metabolism , Rabbits , Rats , Rats, Inbred F344 , Valine/analysis , Valine/metabolism
7.
Chem Res Toxicol ; 16(11): 1448-54, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14615971

ABSTRACT

1,3-Butadiene (BD) is a rodent and human carcinogen. While several epoxides formed during BD metabolism are mutagenic and may contribute to BD carcinogenicity, another proposed metabolite, hydroxymethylvinyl ketone (HMVK), could also be involved. A significant quantity of HMVK is likely to be formed since it is a proposed intermediate in the metabolism of 3-butene-1,2-diol (BD-diol) to 1,2-dihydroxy-4-(N-acetylcysteinyl)butane, the major mercapturic acid metabolite of BD in humans. In addition, BD-diol is a major BD metabolite in liver perfusion experiments in rodents. By analogy with other alpha,beta-unsaturated carbonyls, HMVK is likely to be mutagenic via formation of promutagenic 1,N(2)-propanodeoxyguanosine adducts. The objective of the current study was to investigate the formation of such adducts in vitro. The reaction between HMVK and dGuo yielded two major products shown to be identical by positive ion electrospray-MS, having protonated molecular ions with m/z consistent with HMVK-derived 1,N(2)-propanodeoxyguanosine (HMVK-dGuo). Rechromatography of each fraction yielded two fractions with retention times identical to those initially isolated, suggesting equilibration between two diastereomers. Two partially resolved sets of (1)H NMR signals were consistent with a 1:1 mixture of diastereomeric C-6-substituted adducts equilibrating slowly on an NMR time-scale. Following deglycosylation, C-6 substitution was verified by two-dimensional correlation NMR spectroscopy, indicating that the initial adducts were formed by Michael addition of dGuo-N1 to the terminal vinyl carbon followed by cyclization to the 1,N(2)-propano structure. Reactions with calf thymus DNA under physiological conditions yielded two sets of products. The first set had HPLC retention times and mass spectra identical to those of the previously characterized C-6-substituted HMVK-dGuo diastereomers. The second set had a molecular ion and fragmentation pattern identical to the C-6-substituted adducts and on this basis were assigned as the diastereomeric C-8 adducts. In addition to detecting HMVK-dGuo in treated DNA, the adducts were also present in control DNA. Overall, our research demonstrates that HMVK can form promutagenic DNA adducts and it therefore has the potential to play a role in BD-associated mutagenicity.


Subject(s)
Acetylcysteine/analogs & derivatives , Butadienes/metabolism , Butanones/metabolism , DNA Adducts/biosynthesis , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Acetylcysteine/chemistry , Acetylcysteine/metabolism , Animals , Butadienes/chemical synthesis , Butadienes/chemistry , Butanones/chemistry , Carcinogens/chemistry , Carcinogens/metabolism , Cattle , DNA/chemistry , DNA/metabolism , DNA Adducts/chemistry , DNA Adducts/genetics , Deoxyguanosine/chemical synthesis , Deoxyguanosine/chemistry , Forecasting , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...