Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 186(2): 62, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30627873

ABSTRACT

The authors decribe an ultra-sensitive, room temperature, flexible transparent LPG sensor based on the use of a CdO/graphene nanocomposite. The graphene prevents the accumulation of CdO, enhances the surface area, and acts as a gas sensing material. FESEM images show a uniform decoration of CdO nanoparticles on graphene. The CdO/graphene composite was deposited as a film on interdigitated electrodes (IDEs) which then were used for chemiresistive sensing of liquid petroleum gas (LPG) by using a four probe technique. A Resistivity decreases significantly upon exposure to a LPG. The electrical resistance measurement at a constant bias voltage of 0.5 V. The sensor of type CdO/graphene (1 wt.%) exhibits a sensitivity of 600 ppm of LPG at 27 °C. It is a highly selective, stable and sensitive to low concentration of LPG even at room temperature. Graphical abstract The gas sensing properties of CdO/graphene nanocomposite with different weight percentages were studied using chemiresistive technique.

2.
Colloids Surf B Biointerfaces ; 174: 199-206, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30465994

ABSTRACT

Diabetes mellitus is one of the threatening, non-communicable and chronic ailments worldwide since ancient times to the current stage of human existence. The utilization of nanoparticles as a medicine in the treatment of diabetes is an attractive proposition. In the present study, herbal mediated cerium oxide nanoparticles (HMCeO2 NPs), herbal mediated silver nanoparticles (HMAg NPs) and Lawsonia intermix extract (LIE) was evaluated for them for in-vivo hypoglycemic effect and compared the potency. The resulting HMCeO2 NPs, HMAg NPs and Lawsonia inermis have been characterized by different analytical equipments such as X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Particle size analyzer (PSA), Field emission scanning electron microscope (FESEM) and High resolution transmission electron microscope (HRTEM). The synthesized NPs and Lawsonia inermis extract were assessed for toxicity by using acute oral toxicity using female albino mice (s) model by following OECD-425 guidelines. In in-vivo hypoglycemic animal model, the male wistar rats with weight varying between 180-200 gms were grouped as: normal control: did not receive any treatment, diabetic control (saline): received a single intraperitoneal dose of Streptozotocin (40 mg/kg), standard: received a single daily oral dose of 50 mg/kg body weight, HMCeO2 NPs: received single daily oral dose of 100 mg/kg, 200 mg/kg, HMAg NPs: received a single daily oral dose of 100 mg/kg, 200 mg/kg, and Lawsonia inermis: received a single daily oral dose of 100 mg/kg, 200 mg/kg. The herbal mediated NPs were considered safe as they have not shown toxic effects. From the current study results, it may conclude that, due to the advanced biological and pharmacological characters, the HMAg NPs depicted more potent hypoglycemic activity than that of LIE and CeO2 NPs.


Subject(s)
Cerium/chemistry , Hypoglycemic Agents/chemistry , Lawsonia Plant/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Administration, Oral , Animals , Biomechanical Phenomena , Cerium/administration & dosage , Female , Hypoglycemic Agents/administration & dosage , Injections, Intraperitoneal , Male , Metal Nanoparticles/administration & dosage , Mice , Particle Size , Plant Extracts/administration & dosage , Rats , Rats, Wistar , Silver/administration & dosage , Streptozocin/administration & dosage , Surface Properties
3.
Pharmacogn Mag ; 13(49): 188-192, 2017.
Article in English | MEDLINE | ID: mdl-28216905

ABSTRACT

Diabetes is a metabolic disorder characterized by hyperglycemia, altered carbohydrate, lipid and protein metabolism. In recent studies, Nanoscience and nanotechnology are blazing fields for researchers; for researchers; of late there has been a prodigious excitement in the field of nanopharmacology to study silver nanoparticle (SNP) synthesis using natural products. Biological methods have been used to synthesize SNPs using medicinally active plants having an antidiabetic role, and this made us to assess the biologically synthesized SNPs from the seed extract of Psoralea corylifolia using 1 mM silver nitrate solution. The synthesized herbal-mediated SNPs (HMSNPs) were subjected to various characterization techniques such as X-ray diffraction analysis (XRD), energy dispersive X-ray (EDX) analysis, transmission electron microscope (TEM), and differential light scattering (DLS), respectively. In the current study the HMSNPs were tested to observe the in vitro antidiabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Huge data from biochemical, cellular, mouse, and chemical inhibitor studies have recognized protein tyrosine phosphatase 1B (PTP1B) as a major negative regulator of insulin signaling. In addition, corroboration suggests that insulin action can be enhanced by the inhibition of PTP1B. Keeping in view of the above fact, the PTP1B assay was done to determine the PTP1 B inhibitory effect of HMSNPs. It can be concluded that medicinal plants can be a good source for the synthe sis of HMSNPs. This study can be used for the development of valuable nanomedicines to treat various ailments, and it also highlights the safety and biocompatibility of SNPs within a biological cell; in vivo parameters need to be considered for further discoveries. SUMMARY: In present research, acute oral toxicity studies and in vitro anti diabetic activity of Herbal mediated silver nanoparticles (HMSNPs) has been investigated. Characterization techniques employed to determine the Crystallanity, size, shape and elemental composition of HMSNPs. The results obtained from acute oral toxicity studies and histopathological studies showed that the synthesized HMSNPs were non-toxic and safe. and also had good in vitro anti diabetic activity. The results would provide certain references to screen out more pharmacological activities of silver nanoparticles using green biosynthesis methods. Abbreviations used: HMSNPs: Herbal mediated silver nanoparticles, XRD: X-ray diffraction, EDX: Energy dispersive X-ray analysis, TEM: Transmission electron microscope, PTP1B: Protein tyrosine phosphotase 1B, OECD: Organization for economic cooperation and development.

SELECTION OF CITATIONS
SEARCH DETAIL
...