Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805995

ABSTRACT

The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.


Subject(s)
Breast Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Recurrence, Local , Tumor-Associated Macrophages
2.
Front Oncol ; 9: 1512, 2019.
Article in English | MEDLINE | ID: mdl-32039007

ABSTRACT

Tumor-associated macrophages (TAMs) as immune cells within the tumor microenvironment have gained much interests as basic science regarding their roles in tumor progression unfolds. Better understanding of their polarization into pro-tumoral phenotype to promote tumor growth, tumor angiogenesis, immune evasion, and tumor metastasis has prompted various studies to investigate their clinical significance as a biomarker of predictive and prognostic value across different cancer types. Yet, the methodologies to investigate the polarization phenomena in solid tumor tissue vary. Nonetheless, quantifying the ratio of M1 to M2 TAMs has emerged to be a prevailing parameter to evaluate this polarization phenomena for clinical application. This mini-review focuses on recent studies exploring clinical significance of M1/M2 TAM ratio in human cancer tissue and critically evaluates the technicalities and challenges in quantifying this parameter for routine clinical practice. Immunohistochemistry appears to be the preferred methodology for M1/M2 TAM evaluation as it is readily available in clinical laboratories, albeit with certain limitations. Recommendations are made to standardize the quantification of TAMs for better transition into clinical practice and for better comparison among studies in various populations of patients and cancer types.

3.
Int J Mycobacteriol ; 6(4): 387-390, 2017.
Article in English | MEDLINE | ID: mdl-29171453

ABSTRACT

BACKGROUND: Rapidly growing mycobacterial species (RGM) are increasingly being recognized as the cause of various superficial and deep infections in humans. Two of the species most frequently isolated from clinical specimens are Mycobacterium abscessus and Mycobacterium fortuitum. Both species are associated with antibiotic resistances that may complicate therapy. This paper describes the pattern of resistance to five antibiotics commonly prescribed for RGM infections, in M. abscessus and M. fortuitum isolated from Malaysian patients. METHODS: The bacterial strains studied were examined with Etest strips to determine their minimum inhibitory concentrations (MICs) toward amikacin, ciprofloxacin, clarithromycin, imipenem, and linezolid. RESULTS: Among 51 M. abscessus isolates examined by the Etest, the overall MICs of ciprofloxacin, imipenem, amikacin, clarithromycin, and linezolid showed resistance rates of 33.3%, 31.4%, 2.0%, 5.9%, and 21.6%, to the five antibiotics, respectively. M. abscessus subspecies abscessus was more resistant than M. abscessus subsp. massilience to ciprofloxacin, imipenem, and linezolid but was more susceptible to clarithromycin and amikacin. M. fortuitum isolates were significantly less resistant than M. abscessus to ciprofloxacin (3.6%) and imipenem (7.1%) but more resistant to clarithromycin (42.9%) and linezolid (39.3%). CONCLUSION: A suitable combination therapy for Malaysian patients would be amikacin plus clarithromycin and ciprofloxacin, to cover infections by all three M. abscessus subspecies and M. fortuitum.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria/drug effects , Drug Therapy, Combination/standards , Humans , Malaysia , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...