Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(2): e87135, 2014.
Article in English | MEDLINE | ID: mdl-24558365

ABSTRACT

Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Molecular Dynamics Simulation , Troponin C/metabolism , Actins/metabolism , Animals , Calcium/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Mice , Models, Statistical , Myocardium/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Recombinant Proteins/chemistry , Static Electricity
2.
J Biol Chem ; 287(44): 37119-33, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22927432

ABSTRACT

Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP(2). Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP(2) binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP(2) binding. The study provides the first structural view of the activated ezrin bound to PIP(2) and to F-actin.


Subject(s)
Actins/chemistry , Cytoskeletal Proteins/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Amino Acid Substitution , Cytoskeletal Proteins/genetics , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Neutron Diffraction , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Scattering, Small Angle , Sodium-Hydrogen Exchangers/chemistry , Surface Plasmon Resonance , X-Ray Diffraction
3.
J Mol Biol ; 400(5): 1036-45, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20540949

ABSTRACT

Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca(2+), but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca(2+)-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca(2+)-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca(2+) by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca(2+) dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.


Subject(s)
Troponin C/chemistry , Troponin I/chemistry , p21-Activated Kinases/metabolism , Fluorescence Resonance Energy Transfer , Kinetics , Phosphorylation , Protein Conformation , p21-Activated Kinases/chemistry
4.
Biochemistry ; 46(34): 9752-61, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17676764

ABSTRACT

Regulation of cardiac muscle function is initiated by binding of Ca2+ to troponin C (cTnC) which induces a series of structural changes in cTnC and other thin filament proteins. These structural changes are further modulated by crossbridge formation and fine-tuned by phosphorylation of cTnI. The objective of the present study is to use a new Förster resonance energy transfer-based structural marker to distinguish structural and kinetic effects of Ca2+ binding, crossbridge interaction, and protein kinase A phosphorylation of cTnI on the conformational changes of the cTnC N-domain. The FRET-based structural marker was generated by attaching AEDANS to one cysteine of a double-cysteine mutant cTnC(13C/51C) as a FRET donor and attaching DDPM to the other cysteine as the acceptor. The doubly labeled cTnC mutant was reconstituted into the thin filament by adding cTnI, cTnT, tropomyosin, and actin. Changes in the distance between Cys13 and Cys51 induced by Ca2+ binding/dissociation were determined by FRET-sensed Ca2+ titration and stopped-flow studies, and time-resolved fluorescence measurements. The results showed that the presence of both Ca2+ and strong binding of myosin head to actin was required to achieve a fully open structure of the cTnC N-domain in regulated thin filaments. Equilibrium and stopped-flow studies suggested that strongly bound myosin head significantly increased the Ca2+ sensitivity and changed the kinetics of the structural transition of the cTnC N-domain. PKA phosphorylation of cTnI impacted the Ca2+ sensitivity and kinetics of the structural transition of the cTnC N-domain but showed no global structural effect on cTnC opening. These results provide an insight into the modulation mechanism of strong crossbridge and cTnI phosphorylation in cardiac thin filament activation/relaxation processes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardium/metabolism , Troponin C/chemistry , Troponin C/metabolism , Troponin I/metabolism , Actin Cytoskeleton , Actins/metabolism , Animals , Binding Sites , Calcium/pharmacology , Energy Transfer , Kinetics , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Rats , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...