Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
AoB Plants ; 16(3): plae033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872897

ABSTRACT

Argyreia is the most recently evolved genus in the Convolvulaceae, and available information suggests that most species in this family produce seeds with physical dormancy (PY). Our aim was to understand the evolution of seed dormancy in this family via an investigation of dormancy, storage behaviour, morphology and anatomy of seeds of five Argyreia species from Sri Lanka. Imbibition, germination and dye tracking of fresh intact and manually scarified seeds were studied. Scanning electron micrographs and hand sections of the hilar area and the seed coat away from the hilar area were compared. Scarified and intact seeds of A. kleiniana, A. hirsuta and A. zeylanica imbibed water and germinated to a high percentage, but only scarified seeds of A. nervosa and A. osyrensis did so. Thus, seeds of the three former species are non-dormant (ND), while those of the latter two have physical dormancy (PY); this result was confirmed by dye-tracking experiments. Since >90% of A. kleiniana, A. hirsuta and A. zeylanica seeds survived desiccation to 10% moisture content (MC) and >90% of A. nervosa and A. osyrensis seeds with a dispersal MC of ~12% were viable, seeds of the five species were desiccation-tolerant. A. nervosa and A. osyrensis have a wide geographical distribution and PY, while A. kleiniana, A. hirsuta and A. zeylanica have a restricted distribution and ND. Although seeds of A. kleiniana are ND, their seed coat anatomy is similar to that of A. osyrensis with PY. These observations suggest that the ND of A. kleiniana, A. hirsuta and A. zeylanica seeds is the result of an evolutionary reversal from PY and that ND may be an adaptation of these species to the environmental conditions of their wet aseasonal habitats.

2.
AoB Plants ; 2012: pls044, 2012.
Article in English | MEDLINE | ID: mdl-23264873

ABSTRACT

BACKGROUND AND AIMS: Physiological epicotyl dormancy in which the epicotyl elongates inside the seed before the shoot emerges has been reported for only a few tropical rainforest species, all of which are trees that produce recalcitrant seeds. In studies on seeds of Fabaceae in Sri Lanka, we observed a considerable time delay in shoot emergence following root emergence in seeds of the introduced caesalpinioid legumes Brownea coccinea and Cynometra cauliflora. Thus, our aim was to determine if seeds of these two tropical rainforest trees have physiological epicotyl dormancy, and also if they are recalcitrant, i.e. desiccation sensitive. METHODOLOGY: Fresh seeds were (i) dried to various moisture levels, and (ii) stored at -1 and 5 °C to determine loss (or not) of viability and thus type of seed storage behaviour (orthodox, recalcitrant or intermediate). To identify the kind of dormancy, we tested the effect of scarification on imbibition and monitored radicle emergence and epicotyl growth (inside the seed) and emergence. PRINCIPAL RESULTS: FRESH SEEDS OF BOTH SPECIES HAD HIGH MOISTURE CONTENT (MC): 50 % for C. cauliflora and 30 % for B. coccinea. Further, all seeds of C. cauliflora and the majority of those of B. coccinea lost viability when dried to 15 % MC; most seeds of both species also lost viability during storage at -1 or 5 °C. Intact seeds of both species were water permeable, and radicles emerged in a high percentage of them in <30 days. However, shoot emergence lagged behind root emergence by 77 ± 14 days in B. coccinea and by 38 ± 4 days in C. cauliflora. Further, plumule growth inside seeds of C. cauliflora began almost immediately after radicle emergence but not until ∼30-35 days in B. coccinea seeds. CONCLUSIONS: Seeds of both species are recalcitrant and have physiological epicotyl dormancy. The kind of physiological epicotyl dormancy in seeds of C. cauliflora has not been described previously; the formula is C(nd) (root)-[Formula: see text] (epicotyl).

3.
Am J Bot ; 97(1): 15-26, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21622363

ABSTRACT

We report a new kind of seed dormancy and identify the storage behavior category for an important understory rainforest tree that also is used as an ornamental. While studying seed dormancy of Fabaceae species in Sri Lanka, we observed a considerable delay in emergence of the plumule following radicle emergence in Humboldtia laurifolia. Because epicotyl dormancy has not been reported in Fabaceae, we undertook a detailed morphological study of seed germination in this species. Our aims were to document desiccation tolerance/intolerance and epicotyl dormancy in seeds of H. laurifolia. Drying and low temperature storage were used to evaluate storage behavior of the seeds and imbibition, germination, and seed coat anatomy to categorize seed dormancy in two seed collections. Plumule development before its emergence and effects of light and temperature on plumule emergence were monitored. All seeds that were dried to 15% moisture content or stored at -1°C lost viability. Plumules began to grow 20 ± 5 d from radicle emergence and emerged after 40 ± 3 d. Dark and high illuminance further delayed plumule emergence. Seeds are recalcitrant and have a hitherto unreported kind of epicotyl dormancy, for which we propose the formula .

4.
Ann Bot ; 103(3): 433-45, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19098068

ABSTRACT

BACKGROUND AND AIMS: The water-impermeable seeds of Ipomoea lacunosa undergo sensitivity cycling to dormancy breaking treatment, and slits are formed around bulges adjacent to the micropyle during dormancy break, i.e. the water gap opens. The primary aim of this research was to identify the mechanism of slit formation in seeds of this species. METHODS: Sensitive seeds were incubated at various combinations of relative humidity (RH) and temperature after blocking the hilar area in different places. Increase in seed mass was measured before and after incubation. Scanning electron microscopy (SEM) and staining of insensitive and sensitive seeds were carried out to characterize these states morphologically and anatomically. Water absorption was monitored at 35 and 25 degrees C at 100 % RH. KEY RESULTS: There was a significant relationship between incubation temperature and RH with percentage seed dormancy break. Sensitive seeds absorbed water vapour, but insensitive seeds did not. Different amounts of water were absorbed by seeds with different blocking treatments. There was a significant relationship between dormancy break and the amount of water absorbed during incubation. CONCLUSIONS: Water vapour seals openings that allow it to escape from seeds and causes pressure to develop below the bulge, thereby causing slits to form. A model for the mechanism of formation of slits (physical dormancy break) is proposed.


Subject(s)
Ipomoea/physiology , Models, Biological , Seeds/physiology , Absorption , Biological Transport , Biomass , Coloring Agents/metabolism , Germination/physiology , Humidity , Logistic Models , Osmosis , Seeds/cytology , Steam , Temperature
5.
Ann Bot ; 103(1): 45-63, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19074450

ABSTRACT

BACKGROUND AND AIMS: The water gap is an important morphoanatomical structure in seeds with physical dormancy (PY). It is an environmental signal detector for dormancy break and the route of water into the non-dormant seed. The Convolvulaceae, which consists of subfamilies Convolvuloideae (11 tribes) and Humbertoideae (one tribe, monotypic Humberteae), is the only family in the asterid clade known to produce seeds with PY. The primary aim of this study was to compare the morphoanatomical characteristics of the water gap in seeds of species in the 11 tribes of the Convolvuloideae and to use this information, and that on seed dormancy and storage behaviour, to construct a phylogenetic tree of seed dormancy for the subfamily. METHODS: Scanning electron microscopy (SEM) was used to define morphological changes in the hilum area during dormancy break; hand and vibratome sections were taken to describe the anatomy of the water gap, hilum and seed coat; and dye tracking was used to identify the initial route of water entry into the non-dormant seed. Results were compared with a recent cladogram of the family. KEY RESULTS: Species in nine tribes have (a) layer(s) of palisade cells in the seed coat, a water gap and orthodox storage behaviour. Erycibe (Erycibeae) and Maripa (Maripeae) do not have a palisade layer in the seed coat or a water gap, and are recalcitrant. The hilar fissure is the water gap in relatively basal Cuscuteae, and bulges adjacent to the micropyle serve as the water gap in the Convolvuloideae, Dicranostyloideae (except Maripeae) and the Cardiochlamyeae clades. Seeds from the Convolvuloideae have morphologically prominent bulges demarcated by cell shape in the sclereid layer, whereas the Dicranostyloideae and Cardiochlamyeae have non-prominent bulges demarcated by the number of sub-cell layers. The anatomy and morphology of the hilar pad follow the same pattern. CONCLUSIONS: PY in the subfamily Convolvuloideae probably evolved in the aseasonal tropics from an ancestor with recalcitrant non-dormant seeds, and it may have arisen as Convolvulaceae radiated to occupy the seasonal tropics. Combinational dormancy may have developed in seeds of some Cuscuta spp. as this genus moved into temperate habitats.


Subject(s)
Biological Evolution , Convolvulaceae/physiology , Germination/physiology , Seeds/physiology , Convolvulaceae/classification , Convolvulaceae/ultrastructure , Microscopy, Electron, Scanning , Phylogeny , Seeds/metabolism , Seeds/ultrastructure , Water/metabolism
6.
Ann Bot ; 102(1): 39-48, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18453546

ABSTRACT

BACKGROUND AND AIMS: Dormancy in seeds of Cuscuta (Convolvulaceae, tribe Cuscuteae) is due to a water-impermeable seed coat (physical dormancy). In nondormant seeds of several species of this family, bulges adjacent to the micropyle have been identified as the initial route of water entry into seeds (water gap). However, there are claims that water enters seeds of Cuscuta spp. via the entire seed coat. Although several studies have been done on seed coat anatomy of Cuscuta, none has identified and/or characterized the morphology/anatomy of a water gap. Thus, the primary aim of this research was to identify and describe the morphology and anatomy of the water gap in seeds of Cuscuta australis. It was also determined if sensitivity cycling to dormancy-breaking treatments occurs in seeds of this species. METHODS: Light microscopy, scanning electron microscopy, tissue-sectioning and dye-tracking and blocking experiments were used to investigate the morphology and anatomy of the water gap. Treatments simulating natural conditions were used to break seed dormancy. Storage of seeds at different temperatures was tested for their effect on sensitivity to dormancy-breaking treatment. KEY RESULTS: Dormancy-breaking treatments caused the tightly closed hilar fissure to open. Staining was observed in cells below the hilum area but not in those below the seed coat away from the hilum. Sensitivity to dormancy-breaking treatment was induced by storing seeds dry and reduced by storing them wet. CONCLUSIONS: Whereas bulges adjacent to the micropyle act as the water gap in other species of Convolvulaceae with physical dormancy, the hilar fissure serves this function in Cuscuta. Cuscuta australis can cycle between insensitivity <--> sensitivity to dormancy-breaking treatments.


Subject(s)
Convolvulaceae/physiology , Germination/physiology , Seeds/physiology , Water/metabolism , Convolvulaceae/metabolism , Convolvulaceae/ultrastructure , Microscopy, Electron, Scanning , Seeds/metabolism , Seeds/ultrastructure , Temperature
7.
Ann Bot ; 100(1): 13-22, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17513869

ABSTRACT

BACKGROUND AND AIMS: Convolvulaceae is the most advanced plant family (asterid clade) that produces seeds with physical dormancy (water-impermeable seed coat). There are several different opinions about the nature of the specialized structure ('water gap') in the seed coat through which water initially enters seeds of Convolvulaceae, but none of them has been documented clearly. The primary aim of the study was to identify the water gap in seeds of Ipomoea lacunosa (Convolvulaceae) and to describe its morphology, anatomy and function. METHODS: Light microscopy, scanning electron microscopy, tissue-sectioning, dye-tracking and blocking experiments were used to describe the morphology, anatomy and function of the water gap in seeds of I. lacunosa. KEY RESULTS: Dormancy-breaking treatments caused slits to form around the two bulges on the seed coat adjacent to the hilum, and dye entered the seed only via the disrupted bulges. Bulge anatomy differs from that of the rest of the seed coat. Sclereid cells of the bulges are more compacted and elongated than those in the hilum pad and in the rest of the seed coat away from the bulges. CONCLUSIONS: The transition area between elongated and square-shaped sclereid cells is the place where the water gap opens. Morphology/anatomy of the water gap in Convolvulaceae differs from that of taxa in the other 11 angiosperm plant families that produce seeds with physical dormancy for which it has been described.


Subject(s)
Ipomoea/embryology , Seeds/anatomy & histology , Germination/physiology , Ipomoea/anatomy & histology , Ipomoea/physiology , Seeds/growth & development , Seeds/metabolism , Species Specificity , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL