Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0291949, 2023.
Article in English | MEDLINE | ID: mdl-38064473

ABSTRACT

Pigeonpea (Cajanuscajan L.) is a legume crop that contains high levels of polyphenolic compounds and polysaccharides that become a hindrance in extracting good-quality and enough amount of RNA from its tissues. With the existing methods of RNA isolation, the phenolic compounds may co-precipitate or bind to the RNA giving false results. Therefore, in the present study, we have modified conventional CTAB and Trizol-based methods which resulted in good quality with the absorbance A260/A280 ratios in the range of 1.83 to 1.98 and A260/230 ratios in the range of 2.0-2.23, revealed RNA to be of high purity and free of contaminants. Both of the proposed protocols yielded a good quantity of RNA ranging from 289 to 422µg per gram of tissue. Distinctly visible bands of 28S and 18S rRNA were observed without degradation or smear, which indicated the presence of intact RNA. RT-PCR analysis showed that isolated RNA was quantitatively sufficient and compliant for the subsequent gene expression analysis.


Subject(s)
Polyphenols , RNA , Cetrimonium , Molecular Weight , Polysaccharides
2.
Front Microbiol ; 14: 1196101, 2023.
Article in English | MEDLINE | ID: mdl-37465020

ABSTRACT

Population explosions, environmental deprivation, and industrial expansion led to an imbalanced agricultural system. Non-judicial uses of agrochemicals have decreased agrodiversity, degraded agroecosystems, and increased the cost of farming. In this scenario, a sustainable agriculture system could play a crucial role; however, it needs rigorous study to understand the biological interfaces within agroecosystems. Among the various biological components with respect to agriculture, mycorrhizae could be a potential candidate. Most agricultural crops are symbiotic with arbuscular mycorrhizal fungi (AMF). In this study, beetroot has been chose to study the effect of different AMFs on various parameters such as morphological traits, biochemical attributes, and gene expression analysis (ALDH7B4 and ALDH3I1). The AMF Gm-Funneliformis mosseae (Glomus mosseae), Acaulospora laevis, and GG-Gigaspora gigantean were taken as treatments to study the effect on the above-mentioned parameters in beetroot. We observed that among all the possible combinations of mycorrhizae, Gm+Al+GG performed best, and the Al-alone treatment was found to be a poor performer with respect to all the studied parameters. This study concluded that the more the combinations of mycorrhizae, the better the results will be. However, the phenomenon depends on the receptivity, infectivity, and past nutrient profile of the soil.

3.
PLoS One ; 18(2): e0280450, 2023.
Article in English | MEDLINE | ID: mdl-36753474

ABSTRACT

The gaining attention of underutilized oat crops for both food and feed, mining of quality and yield related genes/QTLs from available germplasms of oat is need of the hour. The large family of grasses has a vast number of germplasms that could be harnessed for bio-prospecting. The selection of cross-compatible oat germplasms by molecular markers could be used for the introgression of the novel traits into the elite background of oats. The process needs a thorough study of genetic diversity to see the evolutionary relatedness among germplasms. Considering this, in the present study, the genetic diversity of 38 oat germplasms with 12 agro-morphological traits was carried out using 22 Inter Simple Sequence Repeat (ISSR) markers. We found a high level of polymorphism and 158 distinctive alleles; on average 7.18 alleles per primer, further, high-yielding genotypes were identified with the help of phenotypic data and genetic diversity was analyzed by using DNA fingerprint-based principal component analysis, UPGMA dendrogram. Among these 38 germplasms; eight were identified as superior under high grain yield (OS-424, OS-403, NDO-1101, OL-10, UPO-212, OS-405, OS-6, and OS-346) and another eight germplasms were identified as superior for the high fresh weight (for fodder purpose, NDO-711, RO-19, OL-14, OL-1760/OL-11, NDO-10, UPO-212, UPO-06-1, and RO-11-1). These results suggest that germplasms that are closely related (Cross-compatible) and have good potential for desirable traits could be used for varietal development by using marker-assisted selection.


Subject(s)
Avena , Genetic Variation , Avena/genetics , Polymorphism, Genetic , Phenotype , Genotype , Edible Grain/genetics , Microsatellite Repeats/genetics
4.
Mol Biol Rep ; 49(7): 6181-6188, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526245

ABSTRACT

BACKGROUND: Chickpea is the fourth most important legume crop contributing 15.42% to the total legume production and a rich source of proteins, minerals, and vitamins. Determination of genetic diversity of wild and elite cultivars coupled with early flowering and higher seed germination lines are quintessential for variety improvement. METHODS AND RESULTS: In the present study, we have analyzed the genetic diversity, population structure, cross-species transferability, and allelic richness in 50 chickpea collections using 23 Inter simple sequence repeats (ISSR) markers. The observed parameters such as allele number varied from 3 to 16, range of allele size varied from 150 to 1600 bp and polymorphic information content (PIC) range lies in between 0.15 and 0.49. Dendrogram was constructed with ISSR marker genotypic data and classified 50 chickpea germplasms into groups I and II, where the accession P 74 - 1 is in group I and the rest are in group II. Dendrogram, Principal component analysis (PCA), dissimilarity matrix, and Bayesian model-based genetic clustering of 50 chickpea germplasms revealed that P 74 - 1 and P 1883 are very diverse chickpea accessions. CONCLUSION: Based on genetic diversity analysis, 15 chickpea germplasm having been screened for early flowering and higher seed germination and found that the P 1857-1 and P 3971 have early flowering and higher seed germination percentage in comparison to P 1883 and other germplasm. These agronomic traits are essential for crop improvement and imply the potential of ISSR markers in crop improvement.


Subject(s)
Cicer , Bayes Theorem , Biomarkers , Cicer/genetics , Genetic Variation/genetics , Genotype , Germination/genetics , Microsatellite Repeats/genetics , Seeds/genetics
5.
Mol Biol Rep ; 48(12): 8111-8122, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34716867

ABSTRACT

Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.


Subject(s)
Agriculture/trends , Pest Control, Biological/trends , Plants, Genetically Modified/metabolism , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Crops, Agricultural/genetics , Endotoxins , Genes, Microbial , Humans , Insecta/genetics , Insecticide Resistance , Pest Control, Biological/methods , Plants, Genetically Modified/genetics
6.
Commun Integr Biol ; 13(1): 1-5, 2020.
Article in English | MEDLINE | ID: mdl-32010424

ABSTRACT

Plants are analogous to animals by responding physiologically and phenotypically to environmental changes. Until recently, the meaning of sound in the plant's life remains undiscovered. In this study, we investigated the role of music in response to heat stress and its application in memory and associative learning for stress tolerance in Arabidopsis. Significant upregulation of heat-responsive genes (HSFA3, SMXL7, and ATHSP101) in response to music suggests music has an advantage during heat stress. Moreover, the defensive conditioning experiment showed that plant learns to associate music with stress (heat) and elicit better response compared to music alone. Two heat-responsive genes, HSFA3 and ATCTL1, which are well known for their interaction and regulation of an array of heat shock proteins were found to play a key role in associative learning for heat stress in Arabidopsis. Our experiment highlights the application of sound in plant conditioning and as a stress reliever. Nonetheless, the persistence of memory awaits further experiments. We foresee the potential of artificial sound as an environment-friendly stimulus in conditioning the crops for upcoming stresses and reduce the yield loss, as an alternative to breeding and genetic modifications.

7.
Sci Rep ; 6: 30412, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465480

ABSTRACT

To unravel the molecular mechanism of defense against blister blight (BB) disease caused by an obligate biotrophic fungus, Exobasidium vexans, transcriptome of BB interaction with resistance and susceptible tea genotypes was analysed through RNA-seq using Illumina GAIIx at four different stages during ~20-day disease cycle. Approximately 69 million high quality reads were assembled de novo, yielding 37,790 unique transcripts with more than 55% being functionally annotated. Differentially expressed, 149 defense related transcripts/genes, namely defense related enzymes, resistance genes, multidrug resistant transporters, transcription factors, retrotransposons, metacaspases and chaperons were observed in RG, suggesting their role in defending against BB. Being present in the major hub, putative master regulators among these candidates were identified from predetermined protein-protein interaction network of Arabidopsis thaliana. Further, confirmation of abundant expression of well-known RPM1, RPS2 and RPP13 in quantitative Real Time PCR indicates salicylic acid and jasmonic acid, possibly induce synthesis of antimicrobial compounds, required to overcome the virulence of E. vexans. Compendiously, the current study provides a comprehensive gene expression and insights into the molecular mechanism of tea defense against BB to serve as a resource for unravelling the possible regulatory mechanism of immunity against various biotic stresses in tea and other crops.


Subject(s)
Camellia sinensis/genetics , Camellia sinensis/microbiology , Disease Resistance/genetics , Gene Expression Profiling , Plant Diseases/genetics , Plant Diseases/microbiology , Transcriptome , Camellia sinensis/metabolism , Computational Biology/methods , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...