Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 13(4): plab031, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34285792

ABSTRACT

Elevated CO2 (eCO2) and high temperatures are known to affect plant nitrogen (N) metabolism. Though the combined effects of eCO2 and chronic warming on plant N relations have been studied in some detail, a comprehensive statistical review on this topic is lacking. This meta-analysis examined the effects of eCO2 plus warming on shoot and root %N, tissue protein concentration (root, shoot and grain) and N-uptake rate. In the analyses, the eCO2 treatment was categorized into two classes (<300 or ≥300 ppm above ambient or control), the temperature treatment was categorized into three classes (<1.5, 1.5-5 and >5 °C above ambient or control), plant species were categorized based on growth form and functional group and CO2 treatment technique was also investigated. Elevated CO2 alone or in combination with warming reduced shoot %N (more so at ≥300 vs. <300 ppm above ambient CO2), while root %N was significantly reduced only by eCO2; warming alone often increased shoot %N, but mostly did not affect root %N. Decreased shoot %N with eCO2 alone or eCO2 plus warming was greater for woody and non-woody dicots than for grasses, and for legumes than non-legumes. Though root N-uptake rate was unaffected by eCO2, eCO2 plus warming decreased N-uptake rate, while warming alone increased it. Similar to %N, protein concentration decreased with eCO2 in shoots and grain (but not roots), increased with warming in grain and decreased with eCO2 and warming in grain. In summary, any benefits of warming to plant N status and root N-uptake rate will generally be offset by negative effects of eCO2. Hence, concomitant increases in CO2 and temperature are likely to negate or decrease the nutritional quality of plant tissue consumed as food by decreasing shoot %N and shoot and/or grain protein concentration, caused, at least in part, by decreased root N-uptake rate.

2.
Plants (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917687

ABSTRACT

The response of plant N relations to the combination of elevated CO2 (eCO2) and warming are poorly understood. To study this, tomato (Solanum lycopersicum) plants were grown at 400 or 700 ppm CO2 and 33/28 or 38/33 °C (day/night), and their soil was labeled with 15NO3- or 15NH4+. Plant dry mass, root N-uptake rate, root-to-shoot net N translocation, whole-plant N assimilation, and root resource availability (%C, %N, total nonstructural carbohydrates) were measured. Relative to eCO2 or warming alone, eCO2 + warming decreased growth, NO3- and NH4+-uptake rates, root-to-shoot net N translocation, and whole-plant N assimilation. Decreased N assimilation with eCO2 + warming was driven mostly by inhibition of NO3- assimilation, and was not associated with root resource limitations or damage to N-assimilatory proteins. Previously, we showed in tomato that eCO2 + warming decreases the concentration of N-uptake and -assimilatory proteins in roots, and dramatically increases leaf angle, which decreases whole-plant light capture and, hence, photosynthesis and growth. Thus, decreases in N uptake and assimilation with eCO2 + warming in tomato are likely due to reduced plant N demand.

3.
J Exp Zool A Ecol Integr Physiol ; 335(1): 126-135, 2021 01.
Article in English | MEDLINE | ID: mdl-33135372

ABSTRACT

Global climate change involves both prolonged periods of higher-than-normal temperatures and short but extreme heat waves. Both types of temperature increases are likely to be detrimental to ectotherms, and even if such temperature increases do not cause mortality directly, compensating for such temperature increases will likely entail costs to organisms. We tested the effects of prolonged periods of higher-than-average temperatures and short-term, acute heat stress in wild populations of greater short-horned lizards (Phrynosoma hernandesi), a temperate, montane lizard of the Colorado Plateau, UT, USA. We transplanted one group of lizards from a high- to a low-elevation site, exposing them to a prolonged period of warmer temperatures. These lizards, exposed to prolonged periods of higher-than-average temperatures, experienced no change in sprint speed, endurance, or heat shock protein (HSP) production after treatment compared to baseline levels; however, they had lower water content after the transplant to a warmer climate compared to before the transplant. We exposed a second group of lizards to acute heat stress by exposing them to thermally stressful temperatures for 4 h. These lizards, exposed to a short period of acute heat stress, had no change in endurance, water content, or HSP production following acute heat stress; however, lizards exposed to acute heat stress had slower sprint speeds than control lizards. Our results demonstrate that both prolonged temperature increases and acute heat stress, each of which are predicted to occur with climate change, had different cellular and/or whole organismal-level effects on lizards.


Subject(s)
Desert Climate , Heat-Shock Response , Lizards , Animals , Physical Endurance , Running , Time Factors
4.
Plants (Basel) ; 9(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271885

ABSTRACT

The concentration of nitrogen (N) in vegetative tissues is largely dependent on the balance among growth, root N uptake, and N assimilation. Elevated CO2 (eCO2) plus warming is likely to affect the vegetative-tissue N and protein concentration of wheat by altering N metabolism, but this is poorly understood. To investigate this, spring wheat (Triticum aestivum) was grown for three weeks at two levels of CO2 (400 or 700 ppm) and two temperature regimes (26/21 or 31/26 °C, day/night). Plant dry mass, plant %N, protein concentrations, NO3- and NH4+ root uptake rates (using 15NO3 or 15NH4), and whole-plant N- and NO3--assimilation were measured. Plant growth, %N, protein concentration, and root N-uptake rate were each significantly affected only by CO2, while N- and NO3--assimilation were significantly affected only by temperature. However, plants grown at eCO2 plus warming had the lowest concentrations of N and protein. These results suggest that one strategy breeding programs can implement to minimize the negative effects of eCO2 and warming on wheat tissue N would be to target the maintenance of root N uptake rate at eCO2 and N assimilation at higher growth temperatures.

5.
Am J Bot ; 107(10): 1401-1409, 2020 10.
Article in English | MEDLINE | ID: mdl-33021337

ABSTRACT

PREMISE: Atmospheric carbon dioxide (CO2 ) concentration is increasing, as is the frequency and duration of drought in some regions. Elevated CO2 can decrease the effects of drought by further decreasing stomatal opening and, hence, water loss from leaves. Both elevated CO2 and drought typically decrease plant nutrient concentration, but their interactive effects on nutrient status and uptake are little studied. We investigated whether elevated CO2 helps negate the decrease in plant nutrient status during drought by upregulating nutrient-uptake proteins in roots. METHODS: Barley (Hordeum vulgare) was subjected to current vs. elevated CO2 (400 or 700 ppm) and drought vs. well-watered conditions, after which we measured biomass, tissue nitrogen (N) and phosphorus (P) concentrations (%N and P), N- and P-uptake rates, and the concentration of the major N- and P-uptake proteins in roots. RESULTS: Elevated CO2 decreased the impact of drought on biomass. In contrast, both drought and elevated CO2 decreased %N and %P in most cases, and their effects were additive for shoots. Root N- and P-uptake rates were strongly decreased by drought, but were not significantly affected by CO2 . Averaged across treatments, both drought and high CO2 resulted in upregulation of NRT1 (NO3- transporter) and AMT1 (NH4+ transporter) per unit total root protein, while only drought increased PHT1 (P transporter). CONCLUSIONS: Elevated CO2 exacerbated decreases in %N and %P, and hence food quality, during drought, despite increases in the concentration of nutrient-uptake proteins in roots, indicating other limitations to nutrient uptake.


Subject(s)
Carbon Dioxide , Droughts , Biomass , Hordeum , Nutrients , Plant Leaves , Plant Roots
6.
Plants (Basel) ; 7(2)2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29601475

ABSTRACT

Climate change will increase drought in many regions of the world. Besides decreasing productivity, drought also decreases the concentration (%) of nitrogen (N) and phosphorous (P) in plants. We investigated if decreases in nutrient status during drought are correlated with decreases in levels of nutrient-uptake proteins in roots, which has not been quantified. Drought-sensitive (Hordeum vulgare, Zea mays) and -tolerant grasses (Andropogon gerardii) were harvested at mid and late drought, when we measured biomass, plant %N and P, root N- and P-uptake rates, and concentrations of major nutrient-uptake proteins in roots (NRT1 for NO3, AMT1 for NH4, and PHT1 for P). Drought reduced %N and P, indicating that it reduced nutrient acquisition more than growth. Decreases in P uptake with drought were correlated with decreases in both concentration and activity of P-uptake proteins, but decreases in N uptake were weakly correlated with levels of N-uptake proteins. Nutrient-uptake proteins per gram root decreased despite increases per gram total protein, because of the larger decreases in total protein per gram. Thus, drought-related decreases in nutrient concentration, especially %P, were likely caused, at least partly, by decreases in the concentration of root nutrient-uptake proteins in both drought-sensitive and -tolerant species.

7.
Physiol Plant ; 159(3): 354-365, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27893161

ABSTRACT

Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3- ) or ammonium (NH4+ ), using membrane-localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2 , chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3- or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N-uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3- -uptake rate per g root was correlated with a decrease in the concentration of NO3- -uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+ -uptake proteins and reduced N assimilation was correlated with decreased concentration of N-assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).


Subject(s)
Carbon Dioxide/pharmacology , Nitrogen/metabolism , Solanum lycopersicum/metabolism , Ammonium Compounds/pharmacology , Biomass , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Nitrates/pharmacology , Nitrogen/analysis , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...