Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Infect Dis Model ; 6: 820-831, 2021.
Article in English | MEDLINE | ID: mdl-34250320

ABSTRACT

The imposition and lifting of non-pharmaceutical interventions (NPIs) to avert the COVID-19 pandemic have gained popularity worldwide and will continue to be enforced until herd immunity is achieved. We developed a linear regression model to ascertain the nexus between the time-varying reproduction number averaged over a time window of six days (Rts) and seven NPIs: contact tracing, quarantine efforts, social distancing and health checks, hand hygiene, wearing of facemasks, lockdown and isolation, and health-related supports. Our analysis suggests that the second wave that emerged in Sri Lanka in early October 2020 continued despite numerous NPIs. The model indicates that the most effective single NPI was lockdown and isolation. Conversely, the least effective individual NPIs were hand hygiene and wearing of facemasks. The model also demonstrates that to mitigate the second wave to a satisfactory level (Rts<1), the best single NPI was the contact tracing with stringent imposition (% of improvement of Rts was 69.43 against the base case). By contrast, the best combination of two NPIs was the lockdown & isolation with health-related supports (% of improvement was 31.92 against the base case). As such, many health authorities worldwide can use this model to successfully strategize the imposition and lifting of NPIs for averting the COVID-19 pandemic.

3.
Environ Sci Pollut Res Int ; 27(31): 39149-39163, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32642892

ABSTRACT

Phthalates are widely used as a plasticizer in manufacturing polyethylene terephthalate (PET) bottles to improve softness, flexibility, durability, longevity, and workability. Phthalates are known in instigating profound human health hazards. In many developing countries, lack of proper disposal facilities established for empty PET bottles and the absence of legislation on reuse invariably persuade people to reuse them for storing potable water. An experiment was conducted with two commercial brands of PET bottles to explore the potential of phthalate migration when domestically refilled and reused in multiple times at two temperature conditions. Temperatures of ambient (27 ± 2 °C) and warm (60 ± 2 °C) were selected as the refilling temperatures because of the common practice by people. For both brands, only bis(2-ethylhexyl) phthalate (DEHP) levels were detected in refilled water in every event of reuse. For both brands, mean DEHP levels migrated to water at 60 ± 2 °C were significantly higher (p < 0.05) compared to those at 27 ± 2 °C. Risk analyses carried out on human health suggested that there exist no definite acute or chronic health risks when the refilled water is consumed continuously for 30 years for both temperatures. Still, such risks were higher for the consumption of refilled water of warm temperatures than those of ambient temperature. However, this study elucidates that DEHP migration would be at an alarming rate when the events of reuse of a single bottle increase so that regulations banning the reuse of empty PET bottles are paramount, especially for developing countries.


Subject(s)
Drinking Water/analysis , Phthalic Acids/analysis , Humans , Polyethylene Terephthalates , Risk Assessment
4.
Environ Res ; 188: 109819, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32569870

ABSTRACT

The practice of social distancing and wearing masks has been popular worldwide in combating the contraction of COVID-19. Undeniably, although such practices help control the COVID-19 pandemic to a greater extent, the complete control of virus-laden droplet and aerosol transmission by such practices is poorly understood. This review paper intends to outline the literature concerning the transmission of virus-laden droplets and aerosols in different environmental settings and demonstrates the behavior of droplets and aerosols resulted from a cough-jet of an infected person in various confined spaces. The case studies that have come out in different countries have, with prima facie evidence, manifested that the airborne transmission plays a profound role in contracting susceptible hosts. The infection propensities in confined spaces (airplane, passenger car, and healthcare center) by the transmission of droplets and aerosols under varying ventilation conditions were discussed. Interestingly, the nosocomial transmission by airborne SARS-CoV-2 virus-laden aerosols in healthcare facilities may be plausible. Hence, clearly defined, science-based administrative, clinical, and physical measures are of paramount importance to eradicate the COVID-19 pandemic from the world.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Aerosols , COVID-19 , Humans , SARS-CoV-2
5.
Waste Manag ; 95: 227-240, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31351608

ABSTRACT

Meethotamulla open dump (MOD) of Sri Lanka that has received about 290,000 metric tons of mixed MSW annually collapsed on 14th April 2017 with massive devastation. An integrated approach was attempted to control further collapse with the deployment of drone-assisted and stand-alone instrumentation. The collapsed dump was analyzed for attributes, including contours, heights, wetness, temperature levels, tension cracks, landfill gases, fire, explosion, and asphyxiation hazards with 24-h surveillance after one day of the collapse. The mode of MOD failure was implicated to be deep-seated (rotational) slope failure. A short-term plan, consisting of 12 activities was prepared and successfully implemented. The activities of the short-term plan were carried out at the dumpsite until the water level fluctuations <5 cm, inundation of the toe area receded completely, the horizontal displacement of surface markers <20 mm, lower explosive levels of CH4 and CO less than 5 and 12%, respectively, O2 level improved up to 21%, and temperature variation of the collapsed face <2 °C. The short-term plan was halted when the factor of safety for slope failure of the critical face improved from 0.807 to 1.286 ensuring no signs of a subsequent collapse of the MOD. An early warning system was established in the case of an imminent collapse. This integrated approach, to our knowledge, is the first study instituted, and this holistic management effort could be easily replicated to avoid disasters from slope failures of landfills or open dumps that may occur elsewhere.


Subject(s)
Refuse Disposal , Solid Waste , Gases , Sri Lanka , Waste Disposal Facilities
6.
J Environ Sci Health B ; 53(11): 729-737, 2018.
Article in English | MEDLINE | ID: mdl-29883246

ABSTRACT

Glyphosate, which is commercially available as Roundup®, was the widely used herbicide in Sri Lanka until 2015 and is suspected to be one of the causal factors for Chronic Kidney Disease of unknown etiology (CKDu). This research, therefore, aims at studying the presence of glyphosate and Aminomethylphosphonic acid (AMPA) in different environmental matrices in CKDu prevalent areas. Topsoil samples from agricultural fields, water samples from nearby shallow wells and lakes, and sediment samples from lakes were collected and analyzed for glyphosate and AMPA using the LC/MS. Glyphosate (270-690 µg/kg) and AMPA (2-8 µg/kg) were detected in all soil samples. Amorphous iron oxides and organic matter content of topsoil showed a strong and a moderate positive linear relationship with glyphosate. The glyphosate and inorganic phosphate levels in topsoil had a strong negative significant linear relationship. Presence of high valence cations such as Fe3+ and Al3+ in topsoil resulted in the formation of glyphosate-metal complexes, thus strong retention of glyphosate in soil. Lower levels of AMPA than the corresponding glyphosate levels in topsoil could be attributed to factors such as the strong adsorption capacity of glyphosate to soil and higher LOQ in the quantification of AMPA. The glyphosate levels of lakes were between 28 to 45 µg/L; no AMPA was detected. While trace levels of glyphosate (1-4 µg/L) were detected in all groundwater samples, AMPA (2-11µg/L) was detected only in four out of nine samples. Glyphosate was detected in all sediment samples (85-1000 µg/kg), and a strong linear relationship with the organic matter content was observed. AMPA was detected (1-15 µg/kg) in seven out of nine sediment samples. It could be inferred that the impact on CKDu by the levels of glyphosate and AMPA detected in the study area is marginal when compared with the MCL of the USEPA (700 µg/L).


Subject(s)
Geologic Sediments/analysis , Glycine/analogs & derivatives , Organophosphorus Compounds/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Glycine/analysis , Groundwater/analysis , Herbicides/analysis , Humans , Lakes/analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Sri Lanka/epidemiology , Water Wells , Glyphosate
7.
Environ Technol ; 39(16): 2062-2072, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28662609

ABSTRACT

Fats, oils and grease (FOG) congregate in grease traps and are a slowly biodegradable particulate organic matter, which may require enzymatic or hydrolytic conversion to form readily biodegradable soluble organic matter. The existing treatment methods employ water-based hydrolysis of FOG to form long-chain fatty acids (LCFAs). The LCFAs discharged into wastewater treatment system create functional difficulties, especially the inhibitory effect caused by accumulation of LCFAs. This study aims to find an effective treatment method for this persistent problem encountered in conventional wastewater treatment system. Solid-state degradation by lipolytic fungi was performed in a tray-type reactor as a novel approach of bioaugmentation. Grease trap waste samples were dried to have moisture content of 25-35% and mixed with coir fiber (1% w/v) for proper aeration. Each 10 mg/g dry weight of substrate was inoculated with 1 mL of spore suspension (1 × 107 spores/mL) of lipolytic fungi. Thereafter, moisture content in the reactor was increased to 65%, and incubated at 30°C. Within 72 h of post incubation, degradation efficiency of about 50% was recorded by fungal isolates. The feasibility of using developed protocol for FOG degradation was tested with a laboratory-scale prototype reactor.


Subject(s)
Food Industry , Fungi , Wastewater , Fats , Food-Processing Industry , Water Purification
8.
BMC Endocr Disord ; 14: 20, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24588941

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is one of the leading causes for complete loss of vision among working-aged adults around the world. The present study aims to evaluate the rate of DR and its risk factors among the adults with young-onset diabetes from a tertiary care setting in Sri Lanka. METHODS: A consecutive sample of 1,007 individuals referred from multiple centers, were invited for the study. Ophthalmological evaluation was done, with dilated indirect ophthalmoscopy by an Ophthalmologist. Retinopathy was classified according to the International Clinical DR Disease Severity Scale. An interviewer-administered questionnaire was used to collect socio-demographic and anthropometric details. Seated blood pressure, Fasting Blood Glucose (FBG), HbA1c and urine microalbumin were also measured. Data were analysed using SPSSv14. A binary logistic regression analysis was performed in all patients, with 'presence of DR' as the dichotomous dependent variable and other independent covariates. RESULTS: Sample size was 684 (response rate-67.9%), mean age was 37.1 ± 5.9 years and 36.0% were males. Mean duration of diabetes was 5.2 ± 4.0 years. Previous retinal screening had been done in 51.0% by a non-specialist doctor and in 41.5% by a consultant ophthalmologist. Rate of any degree of DR in the study population was 18.1% (Males 16.4%, Females 20.0%; P = NS). In patients with DR, majority had mild Non-Proliferative DR (NPDR) (57.2%), while 32.2% had moderate NPDR, 0.8% had severe NPDR and 9.7% had maculopathy. Mean age, duration of diabetes, systolic (SBP) and diastolic blood pressure (DBP), FBG, HbA1c and urine microalbumin levels were significantly higher amongst the patients with DR. The results of the binary logistic regression indicate that the duration of diabetes (OR:1.24), HbA1c (OR:1.19), age (OR:1.11), urine Microalbumin (OR:1.11) and DBP (OR:1.04) all were significantly associated with DR. CONCLUSIONS: In this large multi center study, nearly one in five adults with young-onset diabetes was found to have retinopathy. Age, duration of diabetes, HbA1C and urine Microalbumin levels were significantly associated with the presence of retinopathy, while HbA1c was also a significant factor determining severity. Nearly 50% of the study population has never undergone retinal screening by an ophthalmologist, highlighting the need for well organized screening programs.

9.
J Environ Manage ; 87(3): 450-60, 2008 May.
Article in English | MEDLINE | ID: mdl-17383797

ABSTRACT

Severe contamination of water resources including groundwater with iron (Fe) due to various anthropogenic activities has been a major environmental problem in industrial areas of Sri Lanka. Hence, the use of the obnoxious weed, water hyacinth (Eichhornia crassipes (Mart.) Solms) in constructed wetlands (floating aquatic macrophyte-based plant treatment systems) to phytoremediate Fe-rich wastewaters seems to be an appealing option. Although several studies have documented that hyacinths are good metal-accumulating plants none of these studies have documented the ability of this plant grown under different nutrient conditions to remove heavy metals from wastewaters. This paper, therefore, reports the phytoremediation efficiencies of water hyacinth grown under different nutrient conditions for Fe-rich wastewaters in batch-type constructed wetlands. This study was conducted for 15 weeks after 1-week acclimatization by culturing young water hyacinth plants (average height of 20+/-2cm) in 590L capacity fiberglass tanks under different nutrient concentrations of 1-fold [28 and 7.7mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 9.27Femg/L. Another set-up of hyacinths containing only Fe as a heavy metal but without any nutrients (i.e., 0-fold) was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to determine the different mechanisms governing Fe removal from the wastewaters. Fe removal was largely due to phytoremediation mainly through the process of rhizofiltration and chemical precipitation of Fe2O3 and FeOH3 followed by flocculation and sedimentation. However, chemical precipitation was more significant especially during the first 3 weeks of the study. Plants grown in the 0-fold set-up showed the highest phytoremediation efficiency of 47% during optimum growth at the 6th week with a highest accumulation of 6707Femg/kg dry weight. Active effluxing of Fe back to the wastewater at intermittent periods and with time was a key mechanism of avoiding Fe phytotoxicity in water hyacinth cultured in all set-ups. Our study elucidated that water hyacinth grown under nutrient-poor conditions are ideal to remove Fe from wastewaters with a hydraulic retention time of approximately 6 weeks.


Subject(s)
Eichhornia/metabolism , Environmental Restoration and Remediation/methods , Iron/isolation & purification , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Wetlands , Biodegradation, Environmental , Eichhornia/growth & development , Industrial Waste , Nitrogen/metabolism , Phosphorus/metabolism , Time Factors
10.
Article in English | MEDLINE | ID: mdl-17558773

ABSTRACT

This paper reports the biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations of 1-fold [28 mg/L of total nitrogen (TN)], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold and plants harvested from a polluted water body. This study was carried out for a period of 4 months at ambient mesophilic temperatures of 30.3-31.3 degrees C using six 3-barreled batch-fed reactors with the innermost barrel (45 L) being used as the digester. There was no marked variation in the C/N ratios of the plants cultured under different nitrogen concentrations. The addition of fresh cow dung having a low C/N of 8 resulted in a significant reduction in the C/N ratios of the water hyacinth substrates. However, gas production commenced 3 days after charging the reactors and gas production rates peaked in 4-7 days. The volatile solids (VS) degradation and gas production patterns manifested that in conventional single-stage batch digesters acidogenesis and methanogenesis of water hyacinth requires a retention time of around 27-30 days and 27-51 days, respectively. Substrates in the f-1 digester (i.e., the digester containing plants grown under 28 TN mg/L) having the lowest VS content of 45.3 g/L with a highest C/N ratio of 16 showed fairly higher gas production rates consistently (10-27 days) with higher gas yields containing around 50-65% of CH4 (27-51 days). Moreover the highest overall VS (81.7%) removal efficiencies were reported from the f-1 digester. Fairly higher gas production rates and gas yields with fairly higher CH4 contents were also noticed from the f-2 digester containing substrates having a C/N of 14 and f-out digester (containing the plants harvested from the polluted water body) having the lowest C/N ratio of 9.7 with a fairly high VS content of 56 g/L. CH4 production was comparatively low in the f-1/8, f-1/4 and f-1/2 digesters having VS rich substrates with varying C/N ratios. We conclude that water hyacinth could be utilized for biogas production irrespective of the fact that the plants are grown under higher or lower nitrogen concentrations and that there is no necessity for the C/N ratio to be within the optimum range of 20-32 required for anaerobic digestion. Further it is concluded that several biochemical characteristics of the substrates significantly influences biogas production besides the C/N ratio.


Subject(s)
Bioreactors , Eichhornia/metabolism , Methane/biosynthesis , Nitrogen/metabolism , Water Purification/methods , Biodegradation, Environmental , Carbon/metabolism , Manure
11.
Article in English | MEDLINE | ID: mdl-17182390

ABSTRACT

This article reports the phytoremediation efficiencies of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutritional conditions for Al rich wastewaters in batch type constructed wetlands (floating aquatic macrophyte-based plant treatment systems). This study was conducted for 15 weeks after 1 week acclimatization by culturing young water hyacinth (average height of 20 +/- 2 cm) in 590 L capacity fiberglass tanks under different nutrient concentrations of 2-fold [56 and 15.4 mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 1-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 5.62 Al mg/L. A control set-up of hyacinths comprising only Al with no nutrients was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to identify the different Al removal mechanisms from the wastewaters. Chemical precipitation of Al(OH)3 was a dominant contribution to Al removal at the beginning of the study, whereas adsorption of Al3+ to sediments was observed to be a predominant Al removal mechanism as the study progressed. Phytoremediation mainly due to rhizofiltration was also an important mechanism of Al removal especially during the first 4 weeks of the study in almost all the set-ups. However, chemical precipitation and sediment adsorption of Al3+ was a dominant contribution to Al removal in comparison with phytoremediation. Plants cultured in the control set-up showed the highest phytoremediation efficiency of 63% during the period of the 4th week. A similar scenario was evident in the 1/8-fold set-up. Hence we conclude that water hyacinth grown under lower nutritional conditions are more ideal to commence a batch type constructed wetland treating Al rich wastewaters with a hydraulic retention time of approximately 4 weeks, after which a complete harvesting is recommended.


Subject(s)
Aluminum/metabolism , Eichhornia/metabolism , Wetlands , Aluminum/analysis , Aluminum/isolation & purification , Biodegradation, Environmental , Eichhornia/growth & development , Environmental Restoration and Remediation/methods , Time Factors , Waste Disposal, Fluid/methods , Water Pollution, Chemical/analysis , Water Pollution, Chemical/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...