Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34572625

ABSTRACT

Vicious cycles of chronic airway obstruction, lung infections with Pseudomonas aeruginosa, and neutrophil-dominated inflammation contribute to morbidity and mortality in cystic fibrosis (CF) patients. Rhesus theta defensin-1 (RTD-1) is an antimicrobial macrocyclic peptide with immunomodulatory properties. Our objective was to investigate the anti-inflammatory effect of RTD-1 in a murine model of chronic P. aeruginosa lung infection. Mice received nebulized RTD-1 daily for 6 days. Bacterial burden, leukocyte counts, and cytokine concentrations were evaluated. Microarray analysis was performed on bronchoalveolar lavage fluid (BALF) cells and lung tissue homogenates. In vitro effects of RTD-1 in THP-1 cells were assessed using quantitative reverse transcription PCR, enzyme-linked immunosorbent assays, immunoblots, confocal microscopy, enzymatic activity assays, and NF-κB-reporter assays. RTD-1 significantly reduced lung white blood cell counts on days 3 (-54.95%; p = 0.0003) and 7 (-31.71%; p = 0.0097). Microarray analysis of lung tissue homogenates and BALF cells revealed that RTD-1 significantly reduced proinflammatory gene expression, particularly inflammasome-related genes (nod-like receptor protein 3, Mediterranean fever gene, interleukin (IL)-1α, and IL-1ß) relative to the control. In vitro studies demonstrated NF-κB activation was reduced two-fold (p ≤ 0.0001) by RTD-1 treatment. Immunoblots revealed that RTD-1 treatment inhibited proIL-1ß biosynthesis. Additionally, RTD-1 treatment was associated with a reduction in caspase-1 activation (FC = -1.79; p = 0.0052). RTD-1 exhibited potent anti-inflammatory activity in chronically infected mice. Importantly, RTD-1 inhibits inflammasome activity, which is possibly a downstream effect of NF-κB modulation. These findings support that this immunomodulatory peptide may be a promising therapeutic for CF-associated lung disease.

2.
Am J Respir Cell Mol Biol ; 58(3): 310-319, 2018 03.
Article in English | MEDLINE | ID: mdl-28954201

ABSTRACT

Acute lung injury (ALI) is a clinical syndrome characterized by acute respiratory failure and is associated with substantial morbidity and mortality. Rhesus θ-defensin (RTD)-1 is an antimicrobial peptide with immunomodulatory activity. As airway inflammation and neutrophil recruitment and activation are hallmarks of ALI, we evaluated the therapeutic efficacy of RTD-1 in preclinical models of the disease. We investigated the effect of RTD-1 on neutrophil chemotaxis and macrophage-driven pulmonary inflammation with human peripheral neutrophils and LPS-stimulated murine alveolar macrophage (denoted MH-S) cells. Treatment and prophylactic single escalating doses were administered subcutaneously in a well-established murine model of direct endotoxin-induced ALI. We assessed lung injury by histopathology, pulmonary edema, inflammatory cell recruitment, and inflammatory cytokines/chemokines in the BAL fluid. In vitro studies demonstrated that RTD-1 suppressed CXCL8-induced neutrophil chemotaxis, TNF-mediated neutrophil-endothelial cell adhesion, and proinflammatory cytokine release in activated murine alveolar immortalized macrophages (MH-S) cells. Treatment with RTD-1 significantly inhibited in vivo LPS-induced ALI by reducing pulmonary edema and histopathological changes. Treatment was associated with dose- and time-dependent inhibition of proinflammatory cytokines (TNF, IL-1ß, and IL-6), peroxidase activity, and neutrophil recruitment into the airways. Antiinflammatory effects were demonstrated in animals receiving RTD-1 up to 12 hours after LPS challenge. Notably, subcutaneously administered RTD-1 demonstrates good peptide stability as demonstrated by the long in vivo half-life. Taken together, these studies demonstrate that RTD-1 is efficacious in an experimental model of ALI through inhibition of neutrophil chemotaxis and adhesion, and the attenuation of proinflammatory cytokines and gene expression from alveolar macrophages.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Defensins/therapeutic use , Neutrophil Infiltration/drug effects , Pneumonia/drug therapy , Pulmonary Edema/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cell Adhesion/immunology , Chemokines/biosynthesis , Endothelial Cells/pathology , Humans , Interleukin-1beta/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Lipopolysaccharides/toxicity , Macaca mulatta , Macrophages/immunology , Mice , Mice, Inbred BALB C , Neutrophil Infiltration/immunology , Neutrophils/immunology , Peroxidases/antagonists & inhibitors , Pneumonia/pathology , Pulmonary Edema/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
3.
Article in English | MEDLINE | ID: mdl-28559270

ABSTRACT

Chronic airway infection and inflammation contribute to the progressive loss of lung function and shortened survival of patients with cystic fibrosis (CF). Rhesus theta defensin-1 (RTD-1) is a macrocyclic host defense peptide with antimicrobial and immunomodulatory activities. Combined with favorable preclinical safety and peptide stability data, RTD-1 warrants investigation to determine its therapeutic potential for treatment of CF lung disease. We sought to evaluate the therapeutic potential of RTD-1 for CF airway infection and inflammation using in vitro, ex vivo, and in vivo models. We evaluated RTD-1's effects on basal and Pseudomonas aeruginosa-induced inflammation in CF sputum leukocytes and CF bronchial epithelial cells. Peptide stability was evaluated by incubation with CF sputum. Airway pharmacokinetics, safety, and tolerance studies were performed in naive mice. Aerosolized RTD-1 treatment effects were assessed by analyzing lung bacterial burdens and airway inflammation using an established model of chronic P. aeruginosa endobronchial infection in CF (ΔF508) mice. RTD-1 directly reduces metalloprotease activity, as well as inflammatory cytokine secretion from CF airway leukocyte and bronchial epithelial cells. Intrapulmonary safety, tolerability, and stability data support the aerosol administration route. RTD-1 reduced the bacterial lung burden, airway neutrophils, and inflammatory cytokines in CF mice with chronic P. aeruginosa lung infection. Collectively, these studies support further development of RTD-1 for treatment of CF airway disease.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Defensins/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Adult , Animals , Cystic Fibrosis/physiopathology , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/microbiology , Female , Humans , Inflammation , Leukocytes/microbiology , Lung/microbiology , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Neutrophils/microbiology , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Specific Pathogen-Free Organisms , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...