Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 218(8): 66, 2022.
Article in English | MEDLINE | ID: mdl-36407497

ABSTRACT

The Van Allen Probes mission operations materialized through a distributed model in which operational responsibility was divided between the Mission Operations Center (MOC) and separate instrument specific SOCs. The sole MOC handled all aspects of telemetering and receiving tasks as well as certain scientifically relevant ancillary tasks. Each instrument science team developed individual instrument specific SOCs proficient in unique capabilities in support of science data acquisition, data processing, instrument performance, and tools for the instrument team scientists. In parallel activities, project scientists took on the task of providing a significant modeling tool base usable by the instrument science teams and the larger scientific community. With a mission as complex as Van Allen Probes, scientific inquiry occurred due to constant and significant collaboration between the SOCs and in concert with the project science team. Planned cross-instrument coordinated observations resulted in critical discoveries during the seven-year mission. Instrument cross-calibration activities elucidated a more seamless set of data products. Specific topics include post-launch changes and enhancements to the SOCs, discussion of coordination activities between the SOCs, SOC specific analysis software, modeling software provided by the Van Allen Probes project, and a section on lessons learned. One of the most significant lessons learned was the importance of the original decision to implement individual team SOCs providing timely and well-documented instrument data for the NASA Van Allen Probes Mission scientists and the larger magnetospheric and radiation belt scientific community.

2.
J Geophys Res Space Phys ; 124(4): 2588-2602, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31245234

ABSTRACT

In addition to clarifying morphological structures of the Earth's radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6-year period 1 September 2012 to 1 September 2018. We focus on data about the relativistic and ultrarelativistic electrons (E≥5 MeV) measured by the Relativistic Electron-Proton Telescope sensors on board the Van Allen Probes spacecraft. This work portrays the radiation belt acceleration, transport, and loss characteristics over a wide range of geomagnetic events. We emphasize features seen repeatedly in the data (three-belt structures, "impenetrable" barrier properties, and radial diffusion signatures) in the context of acceleration and loss mechanisms. We especially highlight solar wind forcing of the ultrarelativistic electron populations and extended periods when such electrons were absent. The analysis includes new display tools showing spatial features of the mission-long time variability of the outer Van Allen belt emphasizing the remarkable dynamics of the system.

3.
J Geophys Res Space Phys ; 123(2): 1260-1278, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29938154

ABSTRACT

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

4.
Nature ; 554(7692): 302-303, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29446411
5.
Earth Planets Space ; 69(1): 129, 2017.
Article in English | MEDLINE | ID: mdl-32009832

ABSTRACT

We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL ~ -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.Graphical AbstractMultispacecraft observations of dipolarization (left panel). Magnetic field component normal to the current sheet (BZ) observed in the night side magnetosphere are plotted from post-midnight to premidnight region: a GOES 13, b Van Allen Probe-A, c GOES 14, d GOES 15, e MMS3, g Geotail, h Cluster 1, together with f a combined product of energy spectra of electrons from MMS1 and MMS3 and i auroral electrojet indices. Spacecraft location in the GSM X-Y plane (upper right panel). Colorcoded By disturbances around the reconnection jets from the MHD simulation of the reconnection by Birn and Hesse (1996) (lower right panel). MMS and GOES 14-15 observed disturbances similar to those at the location indicated by arrows.

SELECTION OF CITATIONS
SEARCH DETAIL
...