Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J AIDS Clin Res ; 8(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-29226013

ABSTRACT

Despite advancements in our understanding of HIV-1 pathogenesis, critical virus components for immunity, vaccines trials, and drugs development, challenges remain in the fight against HIV-1. Of great importance is the inhibitory function of microbicidal cell penetrating peptides and bacterial toxins that interfere with production and neutralize infection of HIV-1 particles. We demonstrate that the neutralizing activity of a cationic 18 amino acids peptide, is similar to a broadly neutralizing human antibody, and inhibits production of two HIV-1 strains in human cell lines. Pretreatment of cells with bacterial toxins or toxoids derived from enterotoxigenic E. coli, boost subsequent activity of the peptide against HIV-1, to inhibit simultaneously production and infection. The synthetic peptide crosses the cell membrane into the cytoplasm and nucleus. In vitro analysis of a possible target for this peptide revealed specific binding to recombinant HIV-1 gag p24. This is the first demonstration of a synergy between bacterial toxins and a cell-penetrating peptide against HIV-1.

2.
J Magn Magn Mater ; 322(2): 190-196, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20161408

ABSTRACT

The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe(3)O(4) nanoparticles with an average size of 10 ± 2.5 nm. These Fe(3)O(4) NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252 ± 6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe(3)O(4) NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (L-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe(3)O(4) NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...