Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(18): 16517-16526, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30998002

ABSTRACT

With the realization of highly efficient perovskite solar cells, the long-term stability of these devices is the key challenge hindering their commercialization. In this work, we study the temperature-dependent stability of perovskite solar cells and develop a model capable of predicting the lifetime and energy yield of perovskite solar cells outdoors. This model results from the measurement of the kinetics governing the degradation of perovskite solar cells at elevated temperatures. The individual analysis of all key current-voltage parameters enables the prediction of device performance under thermal stress with high precision. An extrapolation of the device lifetime at various European locations based on historical weather data illustrates the relation between the laboratory data and real-world applications. Finally, the understanding of the degradation mechanisms affecting perovskite solar cells allows the definition and implementation of strategies to enhance the thermal stability of perovskite solar cells.

2.
Materials (Basel) ; 11(12)2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30562986

ABSTRACT

Mechanical stacking of a thin film perovskite-based solar cell on top of crystalline Si (cSi) solar cell has recently attracted a lot of attention as it is considered a viable route to overcome the limitations of cSi single junction power conversion efficiency. Effective light management is however crucial to minimize reflection or parasitic absorption losses in either the top cell or in the light in-coupling of the transmitted light to the bottom sub-cell. The study here is focused on calculating an optimum performance of a four-terminal mechanically stacked tandem structure by varying the optical property and thickness of the spacer between top and bottom sub-cells. The impact of the nature of the spacer material, with its refractive index and absorption coefficient, as well as the thickness of that layer is used as variables in the optical simulation. The optical simulation is done by using the transfer matrix-method (TMM) on a stack of a semi-transparent perovskite solar cell (top cell) mounted on top of a cSi interdigitated back contact (IBC) solar cell (bottom cell). Two types of perovskite absorber material are considered, with very similar optical properties. The total internal and external short circuit current (Jsc) losses for the semitransparent perovskite top cell as a function of the different optical spacers (material and thickness) are calculated. While selecting the optical spacer materials, Jsc for both silicon (bottom cell) and perovskite (top cell) were considered with the aim to optimize the stack for maximum overall short circuit current. From these simulations, it was found that this optimum in our four-terminal tandem occurred at a thickness of the optical spacer of 160 nm for a material with refractive index n = 1.25. At this optimum, with a combination of selected semi-transparent perovskite top cell, the simulated maximum overall short circuit current (Jsc-combined, max) equals to 34.31 mA/cm². As a result, the four-terminal perovskite/cSi multi-junction solar cell exhibits a power conversion efficiency (PCE) of 25.26%, as the sum of the perovskite top cell PCE = 16.50% and the bottom IBC cSi cell PCE = 8.75%. This accounts for an improvement of more than 2% absolute when compared to the stand-alone IBC cSi solar cell with 23.2% efficiency.

3.
Nano Lett ; 17(11): 6766-6772, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28991488

ABSTRACT

Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...