Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2607, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173195

ABSTRACT

This work presents the structural characterisation of carbon fibres obtained from the carbonization of flax tow at 400°C (CFs400°C) and 1000°C (CFs1000°C) and the thermodynamic and kinetic studies of adsorption of Doxorubicin (Dox) on the fibres. The characteristic of carbon fibres and their drug adsorption and removal mechanism were investigated and compared with that of natural flax tow. All fibres were fully characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), specific surface area analysis and Boehm titration. The results demonstrated the highest adsorption properties of CFs400°C at 323 K (qmax = 275 mg g-1). The kinetic data followed the pseudo-second-order kinetic model more closely, whereas the Dubinin-Radushkevich model suitably described isotherms for all fibres. Calculated parameters revealed that the adsorption process of Dox ions is spontaneous and mainly followed by physisorption and a pore-filling mechanism. The removal efficiency for carbon fibres is low due to the effect of pore-blocking and hydrophobic hydration. However, presented fibres can be treated with a base for further chemical surface modification, increasing the adsorption capacity and controlling the release tendency.


Subject(s)
Bone and Bones , Carbon Fiber , Doxorubicin , Flax/chemistry , Nanostructures , Nanotechnology/methods , Prostheses and Implants , Tissue Scaffolds , Adsorption , Carbon Fiber/chemistry , Drug Liberation , Hot Temperature , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermodynamics
2.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769431

ABSTRACT

The article discusses the release process of doxorubicin hydrochloride (DOX) from multi-wall carbon nanotubes (MWCNTs). The studies described a probable mechanism of release and actions between the surface of functionalized MWCNTs and anticancer drugs. The surface of carbon nanotubes (CNTs) has been modified via treatment in nitric acid to optimize the adsorption and release process. The modification efficiency and physicochemical properties of the MWCNTs+DOX system were analyzed by using SEM, TEM, EDS, FTIR, Raman Spectroscopy and UV-Vis methods. Based on computer simulations at pH 7.4 and the experiment at pH 5.4, the kinetics and the mechanism of DOX release from MWNT were discussed. It has been experimentally observed that the acidic pH (5.4) is appropriate for the efficient release of the drug from CNTs. It was noted that under acidic pH conditions, which is typical for the tumour microenvironment almost 90% of the drug was released in a relatively short time. The kinetics models based on different mathematical functions were used to describe the release mechanism of drugs from MWCNTs. Our studies indicated that the best fit of experimental kinetic curves of release has been observed for the Power-law model and the fitted parameters suggest that the drug release mechanism of DOX from MWCNTs is controlled by Fickian diffusion. Molecular dynamics simulations, on the other hand, have shown that in a neutral pH solution, which is close to the blood pH, the release process does not occur keeping the aggregation level constant. The presented studies have shown that MWCNTs are promising carriers of anticancer drugs that, depending on the surface modification, can exhibit different adsorption mechanisms and release.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Drug Delivery Systems/methods , Nanotubes, Carbon/chemistry , Antineoplastic Agents/pharmacokinetics , Doxorubicin/pharmacokinetics , Drug Liberation , Hydrogen-Ion Concentration , Kinetics , Molecular Dynamics Simulation , Spectrum Analysis, Raman/methods
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445393

ABSTRACT

In this article, a novel method of simultaneous carborane- and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for further immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, morphology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron/pharmacology , Gadolinium/pharmacology , Boron/chemistry , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Dynamic Light Scattering , Gadolinium/chemistry , Humans , MCF-7 Cells , Magnetite Nanoparticles , Microscopy, Electron, Scanning , PC-3 Cells , Particle Size , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
4.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153137

ABSTRACT

This study provides deep insight into the adsorption process of doxorubicin onto different types of carbon nanotubes that have been proved to show attractive properties as a drug delivery system. The main aim of the work was to propose probable adsorption mechanisms and interactions between the anticancer drug and surface of modified and pristine carbon nanotubes at blood pH. The carbon nanotubes were oxidized to optimize the absorbance efficiency relative to that of pristine multiwalled carbon nanotubes. The adsorption isotherm of the modified system was well described by the Temkin equation. It confirms that the adsorption in the system studied involves also hydrogen and covalent bonding and is exothermic in nature. The experimental kinetic curves of adsorption were fitted to different mathematical models to check if the kinetics of doxorubicin adsorption onto the modified multiwalled carbon nanotubes follows a pseudo-second-order model and the chemical sorption is bound to be the rate-limiting. On the basis of the molecular dynamics simulation, it was shown that in vacuo the aggregation tendency of doxorubicin molecules is far more favorable than their adsorption on pristine carbon nanotubes (CNTs). It suggests that only functionalization of the nanotube surface can affect the interaction between doxorubicin and functional groups of the carriers and increases the efficiency of the drug loading process.


Subject(s)
Doxorubicin/pharmacokinetics , Nanotubes, Carbon/chemistry , Adsorption , Calorimetry, Differential Scanning , Computer Simulation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Spectrometry, X-Ray Emission , Surface Properties , Thermogravimetry , Water Pollutants, Chemical/pharmacokinetics
5.
Int J Mol Sci ; 21(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823747

ABSTRACT

Inspired by the unusual shapes of the titration curve observed for many surfactants and mixed colloidal systems, we decided to extend the analysis to isothermal titration calorimetric curves (ITC) by paying special attention to potential structural changes in micellar aggregates. In this paper, we used isothermal titration calorimetry in conjunction with Scanning Transmission Electron Microscopy (STEM), Small-Angle Neutron Scattering (SANS) and X-ray Scattering (SAXS) methods support by Monte Carlo and semiempirical quantum chemistry simulations to confirm if the isothermal calorimetric curve shape can reflect micelle transition phenomena. For that purpose, we analysed, from the thermodynamic point of view, a group of cationic gemini surfactants, alkanediyl-α,ω-bis(dimethylalkylammonium) bromides. We proposed the shape of aggregates created by surfactant molecules in aqueous solutions and changes thereof within a wide temperature range. The results provide evidence for the reorganization processes and the relationship (dependence) between the morphology of the created aggregates and the conditions such as temperature, surfactant concentration and spacer chain length which affect the processes.


Subject(s)
Calorimetry , Micelles , Temperature , Computer Simulation , Density Functional Theory , Kinetics , Monte Carlo Method , Neutron Diffraction , Polymers/chemistry , Scattering, Small Angle , Surface-Active Agents/chemistry , Water/chemistry
6.
Phys Chem Chem Phys ; 14(19): 7145-53, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22491317

ABSTRACT

We report X-ray diffraction studies of water and carbon tetrachloride adsorbed in nanoporous activated carbon fibres. The fibres are built of turbostratic nanoparticles separated by quasi two-dimensional voids, forming narrow slit-shaped pores. In order to determine the structure of water within the pores and its influence on the fibres' structure, mean interatomic and intermolecular distances have been estimated from the positions of the maxima of the normalized angular distribution functions obtained by X-ray diffraction. We observe a cluster arrangement of the water molecules, as well as significant changes in the interlayer distance of the carbon nanoparticles upon adsorption of both water and carbon tetrachloride. The results suggest that very high pressures arise within the pores, as has been observed in molecular simulations, and this may give rise to the large change in electronic properties of the fibres after adsorption of guest molecules. The in-pore pressure normal to the pore walls is estimated from the experimental data, and is found to be positive and of the order 4000 bar. Molecular simulation results for the normal pressure component are presented for both water and carbon tetrachloride in carbon slit pores, and are in general agreement with the experiments. For both fluids the normal pressure is an oscillating function of pore width.

7.
Phys Chem Chem Phys ; 13(19): 9008-13, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21451863

ABSTRACT

We report experimental results on the structure and melting behavior of ice confined in multi-walled carbon nanotubes and ordered mesoporous carbon CMK-3, which is the carbon replica of a SBA-15 silica template. The silica template has cylindrical mesopores with micropores connecting the walls of neighboring mesopores. The structure of the carbon replica material CMK-3 consists of carbon rods connected by smaller side-branches, with quasi-cylindrical mesopores of average pore size 4.9 nm and micropores of 0.6 nm. Neutron diffraction and differential scanning calorimetry have been used to determine the structure of the confined ice and the solid-liquid transition temperature. The results are compared with the behavior of water in multi-walled carbon nanotubes of inner diameters of 2.4 nm and 4 nm studied by the same methods. For D(2)O in CMK-3 we find evidence of the existence of nanocrystals of cubic ice and ice IX; the diffraction results also suggest the presence of ice VIII, although this is less conclusive. We find evidence of cubic ice in the case of the carbon nanotubes. For bulk water these crystal forms only occur at temperatures below 170 K in the case of cubic ice, and at pressures of hundreds or thousands of MPa in the case of ice VIII and IX. These phases appear to be stabilized by the confinement.


Subject(s)
Carbon/chemistry , Ice , Nanostructures/chemistry , Molecular Structure , Porosity , Pressure , Silicon Dioxide/chemistry , Surface Properties
8.
Phys Chem Chem Phys ; 7(22): 3884-7, 2005 Nov 21.
Article in English | MEDLINE | ID: mdl-16358040

ABSTRACT

We report dielectric relaxation spectroscopy measurements of the melting point of carbon tetrachloride confined within open-tip multi-walled carbon nanotubes with two different pore diameters, 4.0 and 2.8 nm. In both cases, a single transition temperature well above the bulk melting point was obtained for confined CCl4. These results contrast with what was obtained in our previous measurements using carbon nanotubes with a pore diameter of 5.0 nm, where multiple transition temperatures both above and below the bulk melting point of CCl4 were observed. Our experimental measurements are consistent with our recent molecular simulation results (F. R. Hung, B. Coasne, E. E. Santiso, K. E. Gubbins, F. R. Siperstein and M. Sliwinska-Bartkowiak, J. Chem. Phys., 2005, 122, 144706). Although the simulations overestimate the temperatures in which melting upon confinement occurs, both simulations and experiments suggest that all regions of adsorbate freeze at the same temperature, and that freezing occurs at higher temperatures upon reduction of the pore diameter.


Subject(s)
Carbon Tetrachloride/chemistry , Nanotubes, Carbon/chemistry , Electric Capacitance , Particle Size , Spectrum Analysis , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...