Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 11(1): 12395, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117312

ABSTRACT

Viral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their natural hosts, sheep and cattle. A combination of SPPV/RVFV and LSDV/RVFV was used to co-infect susceptible cells and animals to detect potential competition. In-vitro interference was evaluated by estimating viral infectivity and copies of viral RNA by a qPCR during three serial passages in cell cultures, whereas in-vivo interference was assessed through antibody responses to vaccination. When lamb testis primary cells were infected with the mixture of capripox and RVFV, the replication of both SPPV and LSDV was inhibited by RVFV. In animals, SPPV/RVFV or LSDV/RVFV combinations inhibited the replication SPPV and LSDV and the antibody response following vaccination. The combined SPPV/RVFV did not protect sheep after challenging with the virulent strain of SPPV and the LSDV/RVFV did not induce interferon Gamma to LSDV, while immunological response to RVFV remain unaffected. Our goal was to assess this interference response to RVFV/capripoxviruses' coinfection in order to develop effective combined live-attenuated vaccines as a control strategy for RVF and SPP/LSD diseases. Our findings indicated that this approach was not suitable for developing a combined SPPV/LSDV/RVFV vaccine candidate because of interference of replication and the immune response among these viruses.


Subject(s)
Capripoxvirus/genetics , Rift Valley fever virus/genetics , Animals , Antibodies, Viral/biosynthesis , Capripoxvirus/immunology , Capripoxvirus/physiology , Cattle , Cells, Cultured , Chlorocebus aethiops , Genes, Viral , In Vitro Techniques , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Rift Valley fever virus/immunology , Rift Valley fever virus/physiology , Sheep , Vero Cells , Viral Vaccines/immunology , Virus Replication
2.
Parasitol Int ; 78: 102149, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32464256

ABSTRACT

Cystic echinococcosis (CE) is a zoonotic disease caused by the cestode parasite Echinococcus granulosus. The disease has an important impact on human health as well as economic costs including the cost of treatment as well as loss of productivity for the livestock industry. In many parts of the world where the disease is endemic, sheep and other livestock play an important role in the parasite's transmission. A vaccine to protect livestock against CE can be effective in reducing transmission and economic costs of the disease. A recombinant antigen vaccine has been developed against infection with E. granulosus (EG95) which could potentially be used to reduce the level of E. granulosus transmission and decrease the incidence of human infections. Further development of the EG95 recombinant vaccine as a combined product with clostridial vaccine antigens is one potential strategy which could improve application of the hydatid vaccine by providing an indirect economic incentive to livestock owners to vaccinate against CE. In this study we investigated the efficacy of the EG95 recombinant vaccine produced in Morocco by vaccination of sheep, including a combined vaccine incorporating EG95 and clostridia antigens. Vaccination with EG95 either as a monovalent vaccine or combined with clostridia antigens, protected sheep against a challenge infection with E. granulosus eggs and induced a strong, long lasting, and specific antibody response against the EG95 antigen.


Subject(s)
Echinococcosis/veterinary , Echinococcus granulosus/immunology , Sheep Diseases/prevention & control , Vaccination/veterinary , Vaccines/immunology , Animals , Echinococcosis/prevention & control , Sheep , Sheep, Domestic , Vaccines, Synthetic/immunology
3.
BMC Vet Res ; 15(1): 452, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842890

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) is a viral disease of major economic importance on small ruminants. Goats are usually known to be more susceptible to the disease. Infection chronology, virus circulation, and the disease early detection need to be better understood. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of goats using a lineage IV virus, the most dominant in the world originated from Asia. PPRV infection was experimentally induced in 4 six-month-old goats by intra-nasal and intravenous route of cell virus suspension and from infectious mashed tissue. The clinical signs were observed and goats were euthanized at predetermined clinical score level for post-mortem examinations and PPRV detection by RT-PCR. Clinical signs of infection were present, pyrexia, serous-mucopurulent nasal discharges, coughing, diarrhea and asthenia, for both cell virus suspension and infectious mashed tissue. PPRV genome was highly detected in swabs and tissues with clinical signs dominated by pulmonary attack and digestive symptoms secondary. RESULTS: Results of this study indicates that PPRV is an invasive infection in animals that in a short period, less than 10 days, invade all vital organs. On live animals, early diagnostic may be easily done on lacrimal and rectal swabs. CONCLUSION: The experimental PPRV-infection model using the cell virus suspension is suitable for vaccine evaluation as a standard model.


Subject(s)
Goat Diseases/pathology , Goat Diseases/virology , Peste-des-Petits-Ruminants/pathology , Animals , Goats , Male , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/isolation & purification , Real-Time Polymerase Chain Reaction/veterinary , Viral Tropism
4.
Vaccine ; 37(12): 1642-1650, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30773401

ABSTRACT

Rift Valley fever (RVF) causes serious health and economic losses to the livestock industry as well as a significant cause of human disease. The prevention of RVF in Africa is a global priority, however, available vaccines have only been partially effective. Therefore, the objective of this study was to evaluate the safety and immunogenicity of a live, attenuated recombinant RVFV arMP-12ΔNSm21/384 nucleotide deletion vaccine candidate in domestic ruminants. Evaluation involved testing to determine the infectivity titer of the vaccine virus in Vero cells for industrial scale up vaccine production. Safety experiments were conducted to determine the potential of the vaccine virus to revert to virulence by serial passages in sheep, the possibility of virus spread from vaccinated sheep and calves to unvaccinated animals, and the potential health effects of administering overdoses of the vaccine to sheep, goats and calves. The immunogenicity of 3 doses of 104, 105 and 106 Tissue Culture Infectious Doses50% (TCID50) of the vaccine was assessed in 3 groups of 10 sheep and 3 groups of 10 goats, and doses of 105, 106 and 107 TCID50 was evaluated in 3 groups of 10 calves subcutaenous vaccintation. The results showed that the infectivity titer of the vaccine virus was 108.4 TCID50/ml, that the vaccine did not spread from vaccinated to un-vaccinated animals, there was no evidence of reversion to virulence in sheep and the vaccine overdoses did not cause any adverse effects. The immunogenicity among sheep, goats and calves indicated that doses of 104-106 TCID50 elicited detectable antibody by day 7 post-vaccination (PV) with antibody titers ranging from 0.6 log to 2.1 log on day 14 PV with sustained titers through day 28 PV. Overall, these findings indicated that the RVFV arMP-12ΔNSm21/384 vaccine is a promising candidate for the prevention of RVF among domestic ruminants.


Subject(s)
Cattle Diseases/prevention & control , Immunogenicity, Vaccine , Rift Valley Fever/prevention & control , Rift Valley fever virus/immunology , Sheep Diseases/prevention & control , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing , Cattle , Chlorocebus aethiops , Goats , Immunoglobulin G/blood , Immunoglobulin G/immunology , Morocco , Neutralization Tests , Sheep , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/genetics , Virus Replication
5.
Protein J ; 36(6): 472-477, 2017 12.
Article in English | MEDLINE | ID: mdl-29139018

ABSTRACT

Cystic echinococcosis (CE) is a widely distributed zoonosis that is highly endemic in the Mediterranean basin. The disease represents a serious public health threat and causes economic losses. The parasite life-cycle involves dogs and ruminants as definitive and intermediate hosts; humans are accidently infected, causing serious clinical issues. Vaccination of ruminants and dog treatments represent the most efficient measures to prevent parasite transmission. The recombinant protein vaccine, EG95, has been used successfully in sheep vaccine trials against CE in several countries. In this study, we expressed the modified antigen, EG95NC-GST, in Escherichia coli for use as a vaccine against Echinococcus granulosus in ruminants. We tested three different media formulations for E. coli culture and established for each culture conditions for optimal levels of soluble EG95 expression. The results demonstrate that SOC and TB media provided high yields in cell density and EG95 protein expression. Purification of the recombinant protein with affinity chromatography (using FPLC) was also performed to increase the purity of the EG95NC--GST antigen.


Subject(s)
Antigens, Helminth/metabolism , Escherichia coli/genetics , Helminth Proteins/metabolism , Recombinant Proteins/metabolism , Vaccines/metabolism , Antigens, Helminth/chemistry , Antigens, Helminth/genetics , Antigens, Helminth/isolation & purification , Cloning, Molecular , Echinococcosis , Helminth Proteins/chemistry , Helminth Proteins/genetics , Helminth Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Vaccines/chemistry , Vaccines/genetics , Vaccines/isolation & purification
6.
Vet Microbiol ; 197: 137-141, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27938675

ABSTRACT

Peste des Petits Ruminants (PPR) is a transboundary viral disease of small ruminants that causes huge economic losses in Africa, The Middle East and Asia. In Morocco, the first PPR outbreak was notified in 2008. Since then no cases were reported for seven years, probably due to three successive vaccination campaigns during 2008-2011 and close surveillance at the border areas. In June 2015, the disease re-emerged in Morocco, raising questions about the origin of the virus. The PPR virus was confirmed by qRT-PCR and virus was isolated from clinical samples on VeroNectin-4 cells. The disease was experimentally reproduced in Alpine goats using both sheep and goat derived outbreak isolates. Molecular characterization of the 2015 Moroccan PPR isolate confirmed the identity of the virus as lineage IV, closely related to the 2012 Algerian (KP793696) and 2012 Tunisian (KM068121) isolates and significantly distinct from the previous PPRV Morocco 2008 strain (HQ131927). Therefore this study confirms a new incursion of PPR virus in Morocco during 2015 and highlights the urgency of implementation of a common control strategy to combat PPR in Maghreb region in North Africa.


Subject(s)
Molecular Epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-petits-ruminants virus/genetics , Animals , Communicable Diseases, Emerging , Genome, Viral , Goats , Morocco/epidemiology , Phylogeny
7.
Rev Stomatol Chir Maxillofac ; 104(6): 334-40, 2003 Dec.
Article in French | MEDLINE | ID: mdl-14968097

ABSTRACT

The classification of superficial vascular anomalies of the face recognizes two major categories: hemangiomas and vascular malformations. A multidisciplinary approach to these malformations is necessary. MRI of venous vascular malformations, pulsed Doppler and arteriography of arteriovenous malformations are key examinations in the exploration strategy for superficial vascular malformations. Hemangiomas always regress. Surgery is generally needed only for late sequelae although in some cases early surgery is beneficial. Percutaneous sclerotherapy and surgery are indicated for venous malformations in order to minimize or improve skin, muscle and bone distorsions. Arteriovenous malformations are the most dangerous vascular anomalies of the face. Superselective arterial embolization prepares the surgical excision of the nidus, complete resection is essential. We review 6 cases of superficial vascular malformations of the face treated surgically and discuss the diagnosis features and the treatment modalities of these vascular anomalies.


Subject(s)
Arteriovenous Malformations/surgery , Face/blood supply , Facial Neoplasms/surgery , Hemangioma/surgery , Adolescent , Adult , Cheek/blood supply , Child, Preschool , Embolization, Therapeutic , Female , Humans , Jugular Veins/abnormalities , Jugular Veins/surgery , Lip/blood supply , Lip Neoplasms/surgery , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...