Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(17)2022 08 24.
Article in English | MEDLINE | ID: mdl-36078038

ABSTRACT

Therapeutic targets in cancer cells defective for the tumor suppressor ARID1A are fundamentals of synthetic lethal strategies. However, whether modulating ARID1A function in premalignant breast epithelial cells could be exploited to reduce carcinogenic potential remains to be elucidated. In search of chromatin-modulating mechanisms activated by anti-proliferative agents in normal breast epithelial (HME-hTert) cells, we identified a distinct pattern of genome-wide H3K27 histone acetylation marks characteristic for the combined treatment by the cancer preventive rexinoid bexarotene (Bex) and carvedilol (Carv). Among these marks, several enhancers functionally linked to TGF-ß signaling were enriched for ARID1A and Brg1, subunits within the SWI/SNF chromatin-remodeling complex. The recruitment of ARID1A and Brg1 was associated with the suppression of TGFBR2, KLF4, and FoxQ1, and the induction of BMP6, while the inverse pattern ensued upon the knock-down of ARID1A. Bex+Carv treatment resulted in fewer cells expressing N-cadherin and dictated a more epithelial phenotype. However, the silencing of ARID1A expression reversed the ability of Bex and Carv to limit epithelial-mesenchymal transition. The nuclear levels of SMAD4, a canonical mediator of TGF-ß action, were more effectively suppressed by the combination than by TGF-ß. In contrast, TGF-ß treatment exceeded the ability of Bex+Carv to lower nuclear FoxQ1 levels and induced markedly higher E-cadherin positivity, indicating a target-selective antagonism of Bex+Carv to TGF-ß action. In summary, the chromatin-wide redistribution of ARID1A by Bex and Carv treatment is instrumental in the suppression of genes mediating TGF-ß signaling, and, thus, the morphologic reprogramming of normal breast epithelial cells. The concerted engagement of functionally linked targets using low toxicity clinical agents represents an attractive new approach for cancer interception.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Cadherins , Chromatin , Chromatin Assembly and Disassembly , Epithelial-Mesenchymal Transition/genetics , Forkhead Transcription Factors , Humans , Transforming Growth Factor beta
2.
Mol Cancer Res ; 20(7): 1071-1082, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35320351

ABSTRACT

Gaining pharmacologic access to the potential of ARID1A, a tumor suppressor protein, to mediate transcriptional control over cancer gene expression is an unresolved challenge. Retinoid X receptor ligands are pleiotropic, incompletely understood tools that regulate breast epithelial cell proliferation and differentiation. We found that low-dose bexarotene (Bex) combined with the nonselective beta-blocker carvedilol (Carv) reduces proliferation of MCF10DCIS.com cells and markedly suppresses ARID1A levels. Similarly, Carv synergized with Bex in MCF-7 cells to suppress cell growth. Chromatin immunoprecipitation sequencing analysis revealed that under nonestrogenic conditions Bex + Carv alters the concerted genomic distribution of the chromatin remodeler ARID1A and acetylated histone H3K27, at sites related to insulin-like growth factor (IGF) signaling. Several distinct sites of ARID1A enrichment were identified in the IGF-1 receptor and IRS1 genes, associated with a suppression of both proteins. The knock-down of ARID1A increased IGF-1R levels, prevented IGF-1R and IRS1 suppression upon Bex + Carv, and stimulated proliferation. In vitro IGF-1 receptor neutralizing antibody suppressed cell growth, while elevated IGF-1R or IRS1 expression was associated with poor survival of patients with ER-negative breast cancer. Our study demonstrates direct impact of ARID1A redistribution on the expression and growth regulation of IGF-1-related genes, induced by repurposed clinical drugs under nonestrogenic conditions. IMPLICATIONS: This study underscores the possibility of the pharmacologic modulation of the ARID1A factor to downregulate protumorigenic IGF-1 activity in patients with postmenopausal breast cancer undergoing aromatase inhibitor treatment.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Insulin-Like Growth Factor I , Receptor, IGF Type 1 , Transcription Factors , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA-Binding Proteins/genetics , Female , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , MCF-7 Cells , Receptor, IGF Type 1/metabolism , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...