Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34442564

ABSTRACT

We discuss distributed chemical sensing based on the swelling of coatings of optical fibers. Volume changes in the coating induce strain in the fiber's glass core, provoking a local change in the refractive index which is detectable by distributed fiber optical sensing techniques. We describe methods to realize different coatings on a single fiber. Simultaneous detection of swelling processes all along the fiber opens the possibility to interrogate thousands of differently functionalized sections on a single fiber. Principal component analysis is used to enable sensors for environmental monitoring, food analysis, agriculture, water quality monitoring, or medical diagnostics.

2.
Sensors (Basel) ; 21(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494419

ABSTRACT

Distributed chemical sensing is demonstrated using standard acrylate coated optical fibers. Swelling of the polymer coating induces strain in the fiber's silica core provoking a local refractive index change which is detectable all along an optical fiber by advanced distributed sensing techniques. Thermal effects can be discriminated from strain using uncoated fiber segments, leading to more accurate strain readings. The concept has been validated by measuring strain responses of various aqueous and organic solvents and different chain length alkanes and blends thereof. Although demonstrated on a short range of two meters using optical frequency-domain reflectometry, the technique can be applied to many kilometer-long fiber installations. Low-cost and insensitive to corrosion and electromagnetic radiation, along with the possibility to interrogate thousands of independent measurement points along a single optical fiber, this novel technique is likely to find applications in environmental monitoring, food analysis, agriculture, water quality monitoring, or medical diagnostics.

3.
Sensors (Basel) ; 21(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430229

ABSTRACT

Monitoring fluid flow rates is imperative for a variety of industries including biomedical engineering, chemical engineering, the food industry, and the oil and gas industries. We propose a flow meter that, unlike turbine or pressure-based sensors, is not flow intrusive, requires zero maintenance, has low risk of clogging, and is compatible with harsh conditions. Using optical fiber sensing, we monitor the temperature distribution along a fluid conduit. Pulsed heat injection locally elevates the fluid's temperature, and from the propagation velocity of the heat downstream, the fluid's velocity is determined. The method is experimentally validated for water and ethanol using optical frequency-domain reflectometry (OFDR) with millimetric spatial resolution over a 1.2 m-long conduit. Results demonstrate that such sensing yields accurate data with a linear response. By changing the optical fiber interrogation to time-domain distributed sensing approaches, the proposed technique can be scaled to cover sensing ranges of several tens of kilometers. On the other extreme, miniaturization for instance by using integrated optical waveguides could potentially bring this flow monitoring technique to microfluidic systems or open future avenues for novel "lab-in-a-fiber" technologies with biomedical applications.


Subject(s)
Fiber Optic Technology , Hot Temperature , Optical Fibers , Temperature
4.
Sensors (Basel) ; 21(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396597

ABSTRACT

A high-order polynomial fitting method is proposed to accelerate the computation of double-Gaussian fitting in the retrieval of the Brillouin frequency shifts (BFS) in optical fibers showing two local Brillouin peaks. The method is experimentally validated in a distributed Brillouin sensor under different signal-to noise ratios and realistic spectral scenarios. Results verify that a sixth-order polynomial fitting can provide a reliable initial estimation of the dual local BFS values, which can be subsequently used as initial parameters of a nonlinear double-Gaussian fitting. The method demonstrates a 4.9-fold reduction in the number of iterations required by double-Gaussian fitting and a 3.4-fold improvement in processing time.

5.
Sensors (Basel) ; 19(19)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557845

ABSTRACT

We developed a novel method to monitor mass flow based on distributed fiber optical temperature sensing. Examination of the temporal and spatial temperature distribution along the entire length of a locally heated fluidic conduit reveals heat flow under forced convection. Our experimental results are in good agreement with two-dimensional finite element analysis that couples fluid dynamic and heat transfer equations. Through analysis of the temperature distribution bidirectional flow rates can be measured over three orders of magnitude. The technique is not flow intrusive, works in harsh conditions, including high-temperatures, high pressures, corrosive media, and strong electromagnetic environments. We demonstrate a first experimental implementation on a short fluidic system with a length of one meter. This range covers many applications such as low volume drug delivery, diagnostics, as well as process and automation technology. Yet, the technique can, without restrictions, be applied to long range installations. Existing fiber optics infrastructures, for instance on oil pipelines or down hole installations, would only require the addition of a heat source to enable reliable flow monitoring capability.

SELECTION OF CITATIONS
SEARCH DETAIL