Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 10(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34451678

ABSTRACT

Kadsura coccinea (KC), a beneficial plant for human health, has been used for centuries in China, Thailand, and Korea in folk medicine and food. There is evidence supporting the biological effects of highly bioactive ingredients in KC such as lignans, triterpenoids, flavonoids, phenolic acids, steroids, and amino acids. In this study, we aimed to explore the effects, functions, and mechanisms of the extracts from KC root (KCR), stem (KCS), leaf (KCL), and fruit (KCF) in UVA and UVB-irradiated keratinocytes and α-melanocyte stimulating hormone (α-MSH)-stimulated melanocytes. First, the total polyphenol and flavonoid contents of KCR, KCS, KCL, and KCF and their radical scavenging activities were investigated. These parameters were found to be in the following order: KCL > KCR > KCS > KCF. UVA and UVB-irradiated keratinocytes were treated with KCR, KCS, KCL, and KCF, and keratinocyte viability, LDH release, intracellular ROS production, and apoptosis were examined. Our results demonstrated that KC extracts improved keratinocyte viability and reduced LDH release, intracellular ROS production, and apoptosis in the presence UVA and UVB irradiation. The overall photoprotective activity of the KC extracts was confirmed in the following order: KCL > KCR > KCS > KCF. Moreover, KC extracts significantly decreased the intracellular melanin content and tyrosinase activity in α-MSH-stimulated melanocytes. Mechanistically, KC extracts reduced the protein and mRNA expression levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated melanocytes. In addition, these extracts markedly downregulated myophthalmosis-related transcription factor expression and cAMP-related binding protein phosphorylation, which is upstream of the regulation of Tyrosinase, TRP-1, and TRP-2. The overall anti-melanogenic activity of the KC extracts was established in the following order. KCL > KCR > KCS > KCF. Overall, the KC extracts exert photoprotective and anti-melanogenic effects, providing a basis for developing potential skin-whitening and photoprotective agents.

2.
Rice (N Y) ; 14(1): 65, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34251486

ABSTRACT

BACKGROUND: The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. RESULTS: We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. CONCLUSION: Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.

3.
Arch Biochem Biophys ; 686: 108365, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32315651

ABSTRACT

Pelargonidin is a natural compound that exists widely in fruits, and exerts antioxidant, anti-atherosclerotic, anti-inflammatory, anti-hyperglycemic, and anti-diabetic activities. However, there have not been any studies concerning its anti-obesity potential to date. Therefore, we evaluated the anti-obesity potential of pelargonidin via inhibition of adipogenesis in 3T3-L1 cells. The cellular oil droplet content was decreased to 68.14%, 56.75%, and 48.39% and triglyceride accumulation decreased to 74.53%, 61.54%, and 47.86% after incubation with 5 µM, 10 µM, and 20 µM pelargonidin, respectively, when compared with DMSO group. Furthermore, pelargonidin treatment led to decrease in glucose consumption. Western blot assay illustrated that the expression of PPAR-γ was suppressed to 63.25%, 47.52%, and 21.23% after incubation with 5 µM, 10 µM, and 20 µM pelargonidin when compared with DMSO group. Then, we measured the expression of some target proteins of PPAR-γ, and found that pelargonidin decreased the expressions of HMGCR, LPL, Glut4, and A-FABP. Besides, the result of Luciferase Reporter Assay indicated that pelargonidin inhibited PPAR-γ transcription activity. These results indicated that pelargonidin exerts anti-adipogenic activity in 3T3-L1 cells through inhibition of PPAR-γ signaling pathway, and pelargonidin could be used as a potential anti-obesity agent.


Subject(s)
Adipogenesis/drug effects , Anthocyanins/pharmacology , Anti-Obesity Agents/pharmacology , PPAR gamma/metabolism , 3T3-L1 Cells , Animals , Anthocyanins/metabolism , Anti-Obesity Agents/metabolism , Down-Regulation/drug effects , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , Triglycerides/genetics , Triglycerides/metabolism
4.
Proc Natl Acad Sci U S A ; 117(3): 1799-1805, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31852823

ABSTRACT

Heterotrimeric G proteins are important transducers of receptor signaling, functioning in plants with CLAVATA receptors in controlling shoot meristem size and with pathogen-associated molecular pattern receptors in basal immunity. However, whether specific members of the heterotrimeric complex potentiate cross-talk between development and defense, and the extent to which these functions are conserved across species, have not yet been addressed. Here we used CRISPR/Cas9 to knock out the maize G protein ß subunit gene (Gß) and found that the mutants are lethal, differing from those in Arabidopsis, in which homologous mutants have normal growth and fertility. We show that lethality is caused not by a specific developmental arrest, but by autoimmunity. We used a genetic diversity screen to suppress the lethal Gß phenotype and also identified a maize Gß allele with weak autoimmune responses but strong development phenotypes. Using these tools, we show that Gß controls meristem size in maize, acting epistatically with G protein α subunit gene (Gα), suggesting that Gß and Gα function in a common signaling complex. Furthermore, we used an association study to show that natural variation in Gß influences maize kernel row number, an important agronomic trait. Our results demonstrate the dual role of Gß in immunity and development in a cereal crop and suggest that it functions in cross-talk between these competing signaling networks. Therefore, modification of Gß has the potential to optimize the trade-off between growth and defense signaling to improve agronomic production.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , Meristem/growth & development , Plant Immunity/physiology , Plant Shoots/growth & development , Zea mays/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Autoimmunity/physiology , CRISPR-Cas Systems , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , Gene Knockout Techniques , Meristem/cytology , Meristem/immunology , Phenotype , Plant Shoots/cytology , Plant Shoots/immunology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Signal Transduction , Transcriptome
5.
Front Plant Sci ; 10: 1383, 2019.
Article in English | MEDLINE | ID: mdl-31737011

ABSTRACT

Rice blast disease, caused by Magnaporthe oryzae, is one of the major constraints to rice production, which feeds half of the world's population. Proteomic technologies have been used as effective tools in plant-pathogen interactions to study the biological pathways involved in pathogen infection, plant response, and disease progression. Advancements in mass spectrometry (MS) and apoplastic and plasma membrane protein isolation methods facilitated the identification and quantification of subcellular proteomes during plant-pathogen interaction. Proteomic studies conducted during rice-M. oryzae interaction have led to the identification of several proteins eminently involved in pathogen perception, signal transduction, and the adjustment of metabolism to prevent plant disease. Some of these proteins include receptor-like kinases (RLKs), mitogen-activated protein kinases (MAPKs), and proteins related to reactive oxygen species (ROS) signaling and scavenging, hormone signaling, photosynthesis, secondary metabolism, protein degradation, and other defense responses. Moreover, post-translational modifications (PTMs), such as phosphoproteomics and ubiquitin proteomics, during rice-M. oryzae interaction are also summarized in this review. In essence, proteomic studies carried out to date delineated the molecular mechanisms underlying rice-M. oryzae interactions and provided candidate proteins for the breeding of rice blast resistant cultivars.

6.
Planta ; 249(5): 1391-1403, 2019 May.
Article in English | MEDLINE | ID: mdl-30673841

ABSTRACT

MAIN CONCLUSION: BR signaling pathways facilitate xylem differentiation and wood formation by fine tuning SlBZR1/SlBZR2-mediated gene expression networks involved in plant secondary growth. Brassinosteroid (BR) signaling and BR crosstalk with diverse signaling cues are involved in the pleiotropic regulation of plant growth and development. Recent studies reported the critical roles of BR biosynthesis and signaling in vascular bundle development and plant secondary growth; however, the molecular bases of these roles are unclear. Here, we performed comparative physiological and anatomical analyses of shoot morphological growth in a cultivated wild-type tomato (Solanum lycopersicum cv. BGA) and a BR biosynthetic mutant [Micro Tom (MT)]. We observed that the canonical BR signaling pathway was essential for xylem differentiation and sequential wood formation by facilitating plant secondary growth. The gradual retardation of xylem development phenotypes during shoot vegetative growth in the BR-deficient MT tomato mutant recovered completely in response to exogenous BR treatment or genetic complementation of the BR biosynthetic DWARF (D) gene. By contrast, overexpression of the tomato Glycogen synthase kinase 3 (SlGSK3) or CRISPR-Cas9 (CR)-mediated knockout of the tomato Brassinosteroid-insensitive 1 (SlBRI1) impaired BR signaling and resulted in severely defective xylem differentiation and secondary growth. Genetic modulation of the transcriptional activity of the tomato Brassinazole-resistant 1/2 (SlBZR1/SlBZR2) confirmed the positive roles of BR signaling pathways for xylem differentiation and secondary growth. Our data indicate that BR signaling pathways directly promote xylem differentiation and wood formation by canonical BR-activated SlBZR1/SlBZR2.


Subject(s)
Brassinosteroids/metabolism , Xylem/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
7.
Genome ; 61(10): 703-712, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30134125

ABSTRACT

Reductions in growth and quality due to powdery mildew (PM) disease cause significant economic losses in tomato production. Oidium neolycopersici was identified as the fungal species responsible for tomato PM disease in South Korea in the present study, based on morphological and internal transcribed spacer DNA sequence analyses of PM samples collected from two remote regions (Muju and Miryang). The genes involved in resistance to this pathogen in the tomato accession 'KNU-12' (Solanum lycopersicum var. cerasiforme) were evaluated, and the inheritance of PM resistance in 'KNU-12' was found to be conferred via simple Mendelian inheritance of a mutant allele of the PM susceptibility locus Ol-2 (SlMlo1). Full-length cDNA analysis of this newly identified mutant allele (Slmlo1.1) showed that a 1-bp deletion in its coding region led to a frameshift mutation possibly resulting in SlMlo1 loss-of-function. An alternatively spliced transcript of Slmlo1.1 was observed in the cDNA sequences of 'KNU-12', but its direct influence on PM resistance is unclear. A derived cleaved amplified polymorphic sequence (dCAPS) and a high-resolution melting (HRM) marker were developed based on the 1-bp deletion in Slmlo1.1, and could be used for efficient marker-assisted selection (MAS) using 'KNU-12' as the source for durable and broad-spectrum resistance to PM.


Subject(s)
Disease Resistance , Frameshift Mutation , Genetic Markers , Solanum lycopersicum/genetics , Alternative Splicing , Cloning, Molecular , Gene Expression Regulation, Plant , Solanum lycopersicum/microbiology , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Saccharomycetales/pathogenicity
8.
Elife ; 72018 03 15.
Article in English | MEDLINE | ID: mdl-29543153

ABSTRACT

Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.


Subject(s)
Arabidopsis Proteins/genetics , Membrane Proteins/genetics , Meristem/genetics , Protein Serine-Threonine Kinases/genetics , Zea mays/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Ligands , Meristem/growth & development , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Zea mays/growth & development
9.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28035023

ABSTRACT

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Subject(s)
Brassinosteroids/metabolism , Cation Transport Proteins/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Cation Transport Proteins/metabolism , Homeostasis , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism
10.
Development ; 143(18): 3238-48, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27624829

ABSTRACT

Shoot meristems are maintained by pluripotent stem cells that are controlled by CLAVATA-WUSCHEL feedback signaling. This pathway, which coordinates stem cell proliferation with differentiation, was first identified in Arabidopsis, but appears to be conserved in diverse higher plant species. In this Review, we highlight the commonalities and differences between CLAVATA-WUSCHEL pathways in different species, with an emphasis on Arabidopsis, maize, rice and tomato. We focus on stem cell control in shoot meristems, but also briefly discuss the role of these signaling components in root meristems.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeodomain Proteins/metabolism , Meristem/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Homeodomain Proteins/genetics , Meristem/genetics , Signal Transduction/genetics , Signal Transduction/physiology
11.
J Plant Physiol ; 200: 62-75, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27340859

ABSTRACT

Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Nitrogen/pharmacology , Oryza/genetics , Plant Roots/genetics , Seedlings/genetics , Ammonium Compounds/pharmacology , Crops, Agricultural/drug effects , Crops, Agricultural/genetics , Gene Ontology , Genes, Plant , Genetic Association Studies , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Quantitative Trait Loci/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Seedlings/drug effects
12.
Nat Genet ; 48(7): 785-91, 2016 07.
Article in English | MEDLINE | ID: mdl-27182966

ABSTRACT

Shoot apical meristems are stem cell niches that balance proliferation with the incorporation of daughter cells into organ primordia. This balance is maintained by CLAVATA-WUSCHEL feedback signaling between the stem cells at the tip of the meristem and the underlying organizing center. Signals that provide feedback from organ primordia to control the stem cell niche in plants have also been hypothesized, but their identities are unknown. Here we report FASCIATED EAR3 (FEA3), a leucine-rich-repeat receptor that functions in stem cell control and responds to a CLAVATA3/ESR-related (CLE) peptide expressed in organ primordia. We modeled our results to propose a regulatory system that transmits signals from differentiating cells in organ primordia back to the stem cell niche and that appears to function broadly in the plant kingdom. Furthermore, we demonstrate an application of this new signaling feedback, by showing that weak alleles of fea3 enhance hybrid maize yield traits.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Plant , Meristem/cytology , Plant Proteins/metabolism , Plant Shoots/cytology , Stem Cells/cytology , Zea mays/growth & development , Cell Differentiation , Meristem/metabolism , Phenotype , Plant Proteins/genetics , Plant Shoots/metabolism , Signal Transduction , Stem Cells/metabolism , Zea mays/genetics , Zea mays/metabolism
13.
J Exp Bot ; 67(6): 1883-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26826218

ABSTRACT

Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice.


Subject(s)
Brassinosteroids/pharmacology , Indoleacetic Acids/metabolism , Oryza/physiology , Plant Leaves/physiology , Plant Proteins/metabolism , Signal Transduction , Alleles , Biomechanical Phenomena/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hydroxylation , Mutation/genetics , Oryza/drug effects , Oryza/genetics , Phenotype , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Leaves/drug effects , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects
14.
Curr Protoc Plant Biol ; 1(3): 466-487, 2016 Sep.
Article in English | MEDLINE | ID: mdl-31725960

ABSTRACT

Rice (Oryza sativa) is the most important consumed staple food for a large and diverse population worldwide. Since databases of genomic sequences became available, functional genomics and genetic manipulations have been widely practiced in rice research communities. Insertional mutants are the most common genetic materials utilized to analyze gene function. To mutagenize rice genomes, we exploited the transpositional activity of an Activator/Dissociation (Ac/Ds) system in rice. To mobilize Ds in rice genomes, a maize Ac cDNA was expressed under the CaMV35S promoter, and a gene trap Ds was utilized to detect expression of host genes via the reporter gene GUS. Conventional transposon-mediated gene-tagging systems rely on genetic crossing and selection markers. Furthermore, the activities of transposases have to be monitored. By taking advantage of the fact that Ds becomes highly active during tissue culture, a plant regeneration system employing tissue culture was employed to generate a large Ds transposant population in rice. This system overcomes the requirement for markers and the monitoring of Ac activity. In the regenerated populations, more than 70% of the plant lines contained independent Ds insertions and 12% expressed GUS at seedling stages. This protocol describes the method for producing a Ds-mediated insertional population via tissue culture regeneration systems. © 2016 by John Wiley & Sons, Inc.

15.
Plant Cell ; 27(1): 104-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25616871

ABSTRACT

Plant architecture is dictated by precise control of meristematic activity. In the shoot, an imbalance in positive or negative maintenance signals can result in a fasciated or enlarged meristem phenotype. fasciated ear4 (fea4) is a semidwarfed mutant with fasciated ears and tassels as well as greatly enlarged vegetative and inflorescence meristems. We identified FEA4 as a bZIP transcription factor, orthologous to Arabidopsis thaliana PERIANTHIA. FEA4 was expressed in the peripheral zone of the vegetative shoot apical meristem and in the vasculature of immature leaves and conspicuously excluded from the stem cell niche at the tip of the shoot apical meristem and from incipient leaf primordia. Following the transition to reproductive fate, FEA4 was expressed throughout the entire inflorescence and floral meristems. Native expression of a functional YFP:FEA4 fusion recapitulated this pattern of expression. We used chromatin immunoprecipitation-sequencing to identify 4060 genes proximal to FEA4 binding sites, including ones that were potentially bound and modulated by FEA4 based on transcriptional changes in fea4 mutant ears. Our results suggest that FEA4 promotes differentiation in the meristem periphery by regulating auxin-based responses and genes associated with leaf differentiation and polarity, potentially in opposition to factors such as KNOTTED1 and WUSCHEL.


Subject(s)
Meristem/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Zea mays/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Leaves/metabolism
16.
Nature ; 502(7472): 555-8, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24025774

ABSTRACT

Shoot growth depends on meristems, pools of stem cells that are maintained by a negative feedback loop between the CLAVATA pathway and the WUSCHEL homeobox gene. CLAVATA signalling involves a secreted peptide, CLAVATA3 (CLV3), and its perception by cell surface leucine-rich repeat (LRR) receptors, including the CLV1 receptor kinase and a LRR receptor-like protein, CLV2 (ref. 4). However, the signalling mechanisms downstream of these receptors are poorly understood, especially for LRR receptor-like proteins, which lack a signalling domain. Here we show that maize COMPACT PLANT2 (CT2) encodes the predicted α-subunit (Gα) of a heterotrimeric GTP binding protein. Maize ct2 phenotypes resemble Arabidopsis thaliana clavata mutants, and genetic, biochemical and functional assays indicate that CT2/Gα transmits a stem-cell-restrictive signal from a CLAVATA LRR receptor, suggesting a new function for Gα signalling in plants. Heterotrimeric GTP-binding proteins are membrane-associated molecular switches that are commonly activated by ligand binding to an associated seven-pass transmembrane (7TM) G-protein-coupled receptor (GPCR). Recent studies have questioned the idea that plant heterotrimeric G proteins interact with canonical GPCRs, and our findings suggest that single pass transmembrane receptors act as GPCRs in plants, challenging the dogma that GPCRs are exclusively 7TM proteins.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Genes, Plant/genetics , Meristem/anatomy & histology , Plant Proteins/metabolism , Signal Transduction , Zea mays/anatomy & histology , Zea mays/genetics , Cloning, Molecular , GTP-Binding Protein alpha Subunits/genetics , Meristem/metabolism , Mutation/genetics , Phenotype , Plant Proteins/genetics , Proteome/genetics , Proteome/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
17.
Plant Mol Biol ; 82(1-2): 39-50, 2013 May.
Article in English | MEDLINE | ID: mdl-23456248

ABSTRACT

Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.


Subject(s)
Membrane Proteins/chemistry , Oryza/growth & development , Oryza/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/growth & development , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Chi-Square Distribution , Chromosome Segregation , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Complementation Test , Molecular Sequence Data , Mutation/genetics , Oryza/genetics , Oryza/ultrastructure , Phenotype , Plant Proteins/genetics , Plant Roots/anatomy & histology , Plant Roots/cytology , Plant Roots/ultrastructure , Plant Shoots/anatomy & histology , Plant Shoots/metabolism , Plants, Genetically Modified , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
18.
New Phytol ; 197(3): 791-804, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23278238

ABSTRACT

Indeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium. This work aims to define the action of IDD10 on gene expression involved in ammonium uptake and nitrogen (N) metabolism. The ammonium induction of key ammonium uptake and assimilation genes was examined in the roots of idd10 mutants and IDD10 overexpressors. Molecular studies and transcriptome analysis were performed to identify target genes and IDD10 binding cis-elements. IDD10 activates the transcription of AMT1;2 and GDH2 by binding to a cis-element motif present in the promoter region of AMT1;2 and in the fifth intron of GDH2. IDD10 contributes significantly to the induction of several genes involved in N-linked metabolic and cellular responses, including genes encoding glutamine synthetase 2, nitrite reductases and trehalose-6-phosphate synthase. Furthermore, the possibility that IDD10 might influence the N-mediated feedback regulation of target genes was examined. This study demonstrates that IDD10 is involved in regulatory circuits that determine N-mediated gene expression in plant roots.


Subject(s)
Oryza/genetics , Plant Proteins/physiology , Quaternary Ammonium Compounds/pharmacology , Transcription Factors/physiology , Amino Acid Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Glutamine/pharmacology , Methionine Sulfoximine/pharmacology , Molecular Sequence Data , Mutagenesis, Insertional , Nitrogen/metabolism , Oryza/drug effects , Oryza/metabolism , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Sequence Alignment , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Nucleic Acids Res ; 39(22): e149, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21965541

ABSTRACT

Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5' and 3' termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.


Subject(s)
Chromosome Aberrations , Chromosomes, Plant , DNA Transposable Elements , Oryza/genetics , Chromatids/genetics , Chromosome Deletion , Chromosome Inversion , Genes, Plant , Genetic Loci , Homologous Recombination
20.
Plant Signal Behav ; 5(11): 1440-1, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21057193

ABSTRACT

A widely accepted regulatory mechanism in maintaining hormone homeostasis involves negative or positive feedback control of biosynthetic genes through signal transduction pathways triggered by hormones. For brassinosteroid (BR) homeostasis, the antagonistic relationship between signaling and biosynthetic pathways has been well characterized. We have identified a transcriptional regulator, RAV-Like1, which activates both a BR receptor gene (BRI1) and BR synthetic genes (D2, D11, and BRD1). RAVL1 possesses a B3 DNA binding domain that exhibits differential affinity for E-box elements in the promoters of BRI1, D2, D11, and BRD1. Semi-dwarfism and BR-insensitive phenotypes are exhibited by ravl1 mutants. Genetic studies have demonstrated that expression alteration of BRI1 and BR synthetic genes by RAVL1 results in changes in BR sensitivity. BZR1 is a negative regulator involved in BR feedback mechanisms. To examine the relationship between RAVL1 and BZR1, expression of the common target gene BRD1 was examined using a transient transcription assay. The suppression of BRD1 by BZR1 is epistatic to activation by RAVL1. More importantly, RAVL1 is not subject to BR feedback regulation. Taken together, this data indicates that RAVL1 is involved in maintaining the basal activity of BRI1 and BR synthetic genes, which ensures that the basal levels of the hormone are produced. This study elucidated the RAVL1-mediated basal activation system which, in cooperation with negative feedback mechanisms, maintains BR homeostasis in higher plants.


Subject(s)
Gene Expression Regulation, Plant/physiology , Homeostasis/physiology , Oryza/metabolism , Plant Proteins/metabolism , Signal Transduction/physiology , Feedback, Physiological/physiology , Mutation , Oryza/genetics , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...