Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-1042504

ABSTRACT

Background/Aims@#Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression. @*Methods@#Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD. @*Results@#After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort. @*Conclusions@#We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-763031

ABSTRACT

Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.


Subject(s)
Humans , Autophagy , Cilia , Homeostasis , Recycling , Signal Transduction
3.
Genomics & Informatics ; : 16-22, 2012.
Article in English | WPRIM (Western Pacific) | ID: wpr-155519

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of multiple fluid-filled cysts that expand over time and destroy renal architecture. The proteins encoded by the PKD1 and PKD2 genes, mutations in which account for nearly all cases of ADPKD, may help guard against cystogenesis. Previously developed mouse models of PKD1 and PKD2 demonstrated an embryonic lethal phenotype and massive cyst formation in the kidney, indicating that PKD1 and PKD2 probably play important roles during normal renal tubular development. However, their precise role in development and the cellular mechanisms of cyst formation induced by PKD1 and PKD2 mutations are not fully understood. To address this question, we presently created Pkd2 knockout and PKD2 transgenic mouse embryo fibroblasts. We used a mouse oligonucleotide microarray to identify messenger RNAs whose expression was altered by the overexpression of the PKD2 or knockout of the Pkd2. The majority of identified mutations was involved in critical biological processes, such as metabolism, transcription, cell adhesion, cell cycle, and signal transduction. Herein, we confirmed differential expressions of several genes including aquaporin-1, according to different PKD2 expression levels in ADPKD mouse models, through microarray analysis. These data may be helpful in PKD2-related mechanisms of ADPKD pathogenesis.


Subject(s)
Animals , Mice , Biological Phenomena , Cell Adhesion , Cell Cycle , Embryonic Structures , Fibroblasts , Kidney , Mice, Transgenic , Microarray Analysis , Oligonucleotide Array Sequence Analysis , Phenotype , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Proteins , RNA, Messenger , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL