Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(11): 6165-6174, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37909769

ABSTRACT

Prolonged skin exposure to UV radiation may result in sunburn, with possible inflammatory and oxidative stress to the skin, skin photoaging, photocarcinogenesis, even DNA damage, and apoptosis if sunscreen protection is not used. Due to the advantages that they offer, high encapsulation capability, increased stability of encapsulated bioactive agents, and release control, nanoparticulate materials have been used in sunscreens despite the hazard that they present: their capacity to penetrate the skin causing toxic side effects (especially the chemical sunscreens). The present study reports the preparation of nanoparticulate composites containing only GRAS substances and using an eco-friendly, inexpensive procedure. The ingredients used have properties that are beneficial to the skin. Zein (Z), a prolamin-rich protein from corn, is biodegradable and biocompatible, is a moisture attractor, and shows effective absorption by cells. Lupulone (L), extracted from hops, is an antibacterial and antioxidant agent that has a stimulating effect on the collagen production in the body due to its content of phytohormones. Gum arabic (GA) is a natural glycoprotein used in beverages and cosmetics as an emulsifier/stabilizer. Composite matrices containing Z/GA/L were prepared using a simple method (antisolvent), which replaces the flammable solvent ethanol with aqueous propylene glycol. The nanocomposites were characterized by FTIR, composition, encapsulation efficiency, and loading capacity for L, size, zeta potential, and morphology (SEM). Their biological activity was investigated as well. The zein-based nanoparticles showed antioxidant and antimicrobial effects (even some synergistic, unexpected behavior) and modulatory activity on the matrix metalloproteinase MMP-1. Due to their properties, the nanoparticles discussed herein show potential for use in formulations for the skin, especially for mature skin, replacing chemical substances with potential side effects used typically in topical delivery systems.


Subject(s)
Nanoparticles , Zein , Antioxidants/pharmacology , Zein/chemistry , Sunscreening Agents/pharmacology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...