Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (185)2022 07 25.
Article in English | MEDLINE | ID: mdl-35938825

ABSTRACT

The family of caspases is known to mediate many cellular pathways beyond cell death, including cell differentiation, axonal pathfinding, and proliferation. Since the identification of the family of cell death proteases, there has been a search for tools to identify and expand the function of specific family members in development, health, and disease states. However, many of the currently commercially available caspase tools that are widely used are not specific for the targeted caspase. In this report, we delineate the approach we have used to identify, validate, and target caspase-9 in the nervous system using a novel inhibitor and genetic approaches with immunohistochemical read-outs. Specifically, we used the retinal neuronal tissue as a model to identify and validate the presence and function of caspases. This approach enables the interrogation of cell-type specific apoptotic and non-apoptotic caspase-9 functions and can be applied to other complex tissues and caspases of interest. Understanding the functions of caspases can help to expand current knowledge in cell biology, and can also be advantageous to identify potential therapeutic targets due to their involvement in disease.


Subject(s)
Caspases , Retina , Apoptosis , Caspase 3/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Differentiation , Nervous System , Retina/metabolism
3.
Nat Commun ; 11(1): 3173, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576823

ABSTRACT

Central nervous system ischemic injury features neuronal dysfunction, inflammation and breakdown of vascular integrity. Here we show that activation of endothelial caspase-9 after hypoxia-ischemia is a critical event in subsequent dysfunction of the blood-retina barrier, using a panel of interrelated ophthalmic in vivo imaging measures in a mouse model of retinal vein occlusion (RVO). Rapid nonapoptotic activation of caspase-9 and its downstream effector caspase-7 in endothelial cells promotes capillary ischemia and retinal neurodegeneration. Topical eye-drop delivery of a highly selective caspase-9 inhibitor provides morphological and functional retinal protection. Inducible endothelial-specific caspase-9 deletion phenocopies this protection, with attenuated retinal edema, reduced inflammation and preserved neuroretinal morphology and function following RVO. These results reveal a non-apoptotic function of endothelial caspase-9 which regulates blood-retina barrier integrity and neuronal survival, and identify caspase-9 as a therapeutic target in neurovascular disease.


Subject(s)
Caspase 9/metabolism , Hypoxia/metabolism , Ischemia/metabolism , Retinal Vein Occlusion/metabolism , Vascular System Injuries/metabolism , Animals , Blood-Retinal Barrier/metabolism , Caspase 7/metabolism , Caspase 9/drug effects , Caspase 9/genetics , Cell Death , Disease Models, Animal , Endothelial Cells/metabolism , Female , Genetic Predisposition to Disease/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rabbits , Retina/metabolism , Retina/pathology , Retinal Vein Occlusion/drug therapy , Retinal Vein Occlusion/pathology , Vascular System Injuries/pathology
4.
Am J Hum Genet ; 99(5): 1117-1129, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27773430

ABSTRACT

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-ß-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


Subject(s)
Apoptosis , CRADD Signaling Adaptor Protein/genetics , Caspase 2/metabolism , Cysteine Endopeptidases/metabolism , Lissencephaly/genetics , Megalencephaly/genetics , Neurons/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Caspase 2/genetics , Cell Survival , Cloning, Molecular , Cognition , Cysteine Endopeptidases/genetics , Dendritic Cells/metabolism , Ethnicity/genetics , Genes, Recessive , Genome-Wide Association Study , HEK293 Cells , Humans , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , PC12 Cells , Rats , Signal Transduction
5.
J Vis Exp ; (100): e52805, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26132278

ABSTRACT

Alzheimer's disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer's disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer's disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta - forms of amyloid-beta that have been proven to be most toxic to neurons - stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner.


Subject(s)
Amyloid beta-Peptides/administration & dosage , Hippocampus/drug effects , Hippocampus/surgery , Neurons/drug effects , Peptide Fragments/administration & dosage , Animals , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stereotaxic Techniques
6.
Neurotherapeutics ; 12(1): 42-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339539

ABSTRACT

Specific therapies for neurologic diseases such as Alzheimer's disease provide the potential for better clinical outcomes. Expression of caspases in the brain is developmentally regulated, and dysregulated in neurologic disease, supporting that caspases may be therapeutic targets. The activity of caspases is carefully regulated via binding partners, cleavage, or endogenous inhibitors to prevent spontaneous activation, which could lead to aberrant cell death. This review serves as a brief examination of the current understanding of the regulation and function of caspases, and approaches to specifically target aberrant caspase activity. The use of proper tools to investigate individual caspases is addressed. Moreover, it summarizes the reports of various caspases in Alzheimer's disease studies. A better understanding of specific caspase pathways in heath and neurodegenerative disease is crucial for identifying specific targets for the development of therapeutic interventions.


Subject(s)
Alzheimer Disease/enzymology , Caspases/metabolism , Neurodegenerative Diseases/pathology , Alzheimer Disease/pathology , Animals , Humans , Neurodegenerative Diseases/enzymology
7.
Cell ; 158(5): 1159-1172, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171414

ABSTRACT

In Alzheimer's disease (AD) brain, exposure of axons to Aß causes pathogenic changes that spread retrogradely by unknown mechanisms, affecting the entire neuron. We found that locally applied Aß1-42 initiates axonal synthesis of a defined set of proteins including the transcription factor ATF4. Inhibition of local translation and retrograde transport or knockdown of axonal Atf4 mRNA abolished Aß-induced ATF4 transcriptional activity and cell loss. Aß1-42 injection into the dentate gyrus (DG) of mice caused loss of forebrain neurons whose axons project to the DG. Protein synthesis and Atf4 mRNA were upregulated in these axons, and coinjection of Atf4 siRNA into the DG reduced the effects of Aß1-42 in the forebrain. ATF4 protein and transcripts were found with greater frequency in axons in the brain of AD patients. These results reveal an active role for intra-axonal translation in neurodegeneration and identify ATF4 as a mediator for the spread of AD pathology.


Subject(s)
Activating Transcription Factor 4/analysis , Alzheimer Disease/pathology , Brain/pathology , Activating Transcription Factor 4/metabolism , Amyloid beta-Peptides/genetics , Animals , Axons/metabolism , Brain/cytology , Brain Chemistry , Eukaryotic Initiation Factor-2/metabolism , Hippocampus , Humans , Mice, Inbred C57BL , Rats , Transcription Factor CHOP/metabolism
8.
Biochem J ; 455(1): 15-25, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23815625

ABSTRACT

Neuronal apoptotic death generally requires de novo transcription, and activation of the transcription factor c-Jun has been shown to be necessary in multiple neuronal death paradigms. Caspase-2 has been implicated in death of neuronal and non-neuronal cells, but its relationship to transcriptional activation has not been clearly elucidated. In the present study, using two different neuronal apoptotic paradigms, ß-amyloid treatment and NGF (nerve growth factor) withdrawal, we examined the hierarchical role of caspase-2 activation in the transcriptional control of neuron death. Both paradigms induce rapid activation of caspase-2 as well as activation of the transcription factor c-Jun and subsequent induction of the pro-apoptotic BH3 (Bcl-homology domain 3)-only protein Bim (Bcl-2-interacting mediator of cell death). Caspase-2 activation is dependent on the adaptor protein RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1ß-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, and both caspase-2 and RAIDD are required for c-Jun activation and Bim induction. The present study thus shows that rapid caspase-2 activation is essential for c-Jun activation and Bim induction in neurons subjected to apoptotic stimuli. This places caspase-2 at an apical position in the apoptotic cascade and demonstrates for the first time that caspase-2 can regulate transcription.


Subject(s)
Apoptosis Regulatory Proteins/genetics , CRADD Signaling Adaptor Protein/genetics , Caspase 2/genetics , Membrane Proteins/genetics , Neurons/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins/genetics , Transcriptional Activation/drug effects , Amyloid beta-Peptides/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , CRADD Signaling Adaptor Protein/metabolism , Caspase 2/metabolism , Fetus , Membrane Proteins/metabolism , Nerve Growth Factor/deficiency , Neurons/cytology , Neurons/drug effects , Primary Cell Culture , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription, Genetic/drug effects
9.
Biochem J ; 444(3): 591-9, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22515271

ABSTRACT

Caspase 2 was initially identified as a neuronally expressed developmentally down-regulated gene (HUGO gene nomenclature CASP2) and has been shown to be required for neuronal death induced by several stimuli, including NGF (nerve growth factor) deprivation and Aß (ß-amyloid). In non-neuronal cells the PIDDosome, composed of caspase 2 and two death adaptor proteins, PIDD (p53-inducible protein with a death domain) and RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1ß-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, has been proposed as the caspase 2 activation complex, although the absolute requirement for the PIDDosome is not clear. To investigate the requirement for the PIDDosome in caspase-2-dependent neuronal death, we have examined the necessity for each component in induction of active caspase 2 and in execution of caspase-2-dependent neuronal death. We find that both NGF deprivation and Aß treatment of neurons induce active caspase 2 and that induction of this activity depends on expression of RAIDD, but is independent of PIDD expression. We show that treatment of wild-type or PIDD-null neurons with Aß or NGF deprivation induces formation of a complex of caspase 2 and RAIDD. We also show that caspase-2-dependent execution of neurons requires RAIDD, not PIDD. Caspase 2 activity can be induced in neurons from PIDD-null mice, and NGF deprivation or Aß use caspase 2 and RAIDD to execute death of these neurons.


Subject(s)
CRADD Signaling Adaptor Protein/biosynthesis , Caspase 2/metabolism , Death Domain Receptor Signaling Adaptor Proteins/biosynthesis , Neurons/enzymology , Animals , Animals, Newborn , Cells, Cultured , Enzyme Activation/physiology , Mice , Mice, Knockout , Nerve Growth Factor/deficiency , Nerve Growth Factor/pharmacology , PC12 Cells , Rats , Rats, Sprague-Dawley
10.
Prog Mol Biol Transl Sci ; 99: 265-305, 2011.
Article in English | MEDLINE | ID: mdl-21238939

ABSTRACT

Caspases, initially identified as a family of proteases regulating cell death, have been found to have nonapoptotic functions as well. Some family members are critical for mediating programmed cell death in development. After development, caspases are downregulated in the nervous system, but continue to perform important nonapoptotic functions relevant for neurogenesis and synaptic plasticity. In neurodegenerative diseases, where aberrant neuronal death is an outstanding feature, there is an increase in caspase activity. The specific caspase death pathways leading to dysfunction and death have still not been fully clarified, despite the plethora of scientific literature addressing these issues. In this chapter, we will present the current knowledge of caspase activation and activity pathways, the current tools for examining caspases, and functions of caspases in the nervous system in health and in disease. Alzheimer's Disease, the most common neurodegenerative disorder, and cerebral ischemia, the most common cause of neurologic death, are used to illustrate our current understanding of death signaling in neurodegenerative diseases. A better understanding of how caspases function in health and disease would provide appropriate specific targets for the development of therapeutic interventions for these diseases. Life and death are exquisitely regulated at the cellular level from development through maturity. During development, neuronal death is the major factor shaping the nervous system. This death is mainly caspase-mediated apoptosis. Once the waves of developmental death have passed (death occurs at different times in different parts of the nervous system), there is downregulation of the death machinery, as the postmitotic neurons should live for the life of the organism. Aberrant neuronal death is a major part of neurodegenerative disorders, but there is still no clear understanding of the processes leading to the phenotypes of the various diseases. Even the type of death that occurs continues to be debated, whether it is apoptotic, necrotic, or autophagic, or some combination of these death mechanisms. Here, we will discuss the role that the caspases play in neuronal function, dysfunction, and death. First, we will discuss the regulation of caspase activation and activity. We will examine the current understanding of caspase function in developmental neuronal death and then illustrate the role of caspases in neuronal death in disease employing two diseases of neuronal loss, Alzheimer's Disease (AD), which is the most common chronic neurodegenerative disorder, and cerebral ischemia/stroke, the third most common cause of death in Western society, which is an acute neuronal disorder with chronic sequelae.


Subject(s)
Caspases/metabolism , Disease , Health , Nervous System/enzymology , Animals , Caspases/chemistry , Humans , Nervous System/pathology , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/pathology , Neurons/enzymology , Neurons/pathology
11.
J Neurosci ; 30(28): 9368-80, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20631166

ABSTRACT

Recent studies demonstrate that the neuropeptide VGF (nonacronymic) is regulated in the hippocampus by antidepressant therapies and animal models of depression and that acute VGF treatment has antidepressant-like activity in animal paradigms. However, the role of VGF in human psychiatric disorders is unknown. We now demonstrate using in situ hybridization that VGF is downregulated in bipolar disorder in the CA region of the hippocampus and Brodmann's area 9 of the prefrontal cortex. The mechanism of VGF in relation to LiCl was explored. Both LiCl intraperitoneally and VGF intracerebroventricularly reduced latency to drink in novelty-induced hypophagia, and LiCl was not effective in VGF(+/-) mice, suggesting that VGF may contribute to the effects of LiCl in this behavioral procedure that responds to chronic antidepressant treatment. VGF by intrahippocampal injection also had novel activity in an amphetamine-induced hyperlocomotion assay, thus mimicking the actions of LiCl injected intraperitoneally in a system that phenocopies manic-like behavior. Moreover, VGF(+/-) mice exhibited increased locomotion after amphetamine treatment and did not respond to LiCl, suggesting that VGF is required for the effects of LiCl in curbing the response to amphetamine. Finally, VGF delivered intracerebroventricularly in vivo activated the same signaling pathways as LiCl and is necessary for the induction of mitogen-activated protein kinase and Akt by LiCl, thus lending insight into the molecular mechanisms underlying the actions of VGF. The dysregulation of VGF in bipolar disorder as well as the behavioral effects of the neuropeptide similar to LiCl suggests that VGF may underlie the pathophysiology of bipolar disorder.


Subject(s)
Bipolar Disorder/metabolism , Hippocampus/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Prefrontal Cortex/metabolism , Analysis of Variance , Animals , Antimanic Agents/pharmacology , Blotting, Western , Down-Regulation , Hippocampus/drug effects , Humans , In Situ Hybridization , Lithium Chloride/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Mice, Transgenic , Motor Activity/drug effects , Neurons/drug effects , Neuropeptides/genetics , Neuropeptides/pharmacology , Prefrontal Cortex/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Neuron Glia Biol ; 4(1): 35-42, 2008 Feb.
Article in English | MEDLINE | ID: mdl-19267952

ABSTRACT

A key neurotrophin responsible for the survival and function of basal forebrain (BF) cholinergic neurons is brain-derived neurotrophic factor (BDNF). A number of studies now indicate that a source of this factor may be BF astrocytes. This study was designed to define the role of BF-astrocyte-derived BDNF on cholinergic neurons. Moreover, it investigated regulatory events that modulate BDNF content and release. In initial work BDNF derived from BF-astrocyte-conditioned medium (ACM) was found to increase both numbers of BF acetylcholinesterase (AChE+) cholinergic neurons and the cholinergic synthetic enzyme choline acetyltransferase (ChAT). Western blots, immunocytochemistry and pharmacological inhibition studies revealed that glutamate, through group I metabotropic glutamate receptors (mGluR), increases the intracellular levels of BDNF in BF astrocytes in culture, as well as its release. Furthermore, the release of BDNF is mediated by the actions of PLC, IP3 and internal stores of Ca2+. These results suggest that BF astrocytes serve as local sources of BDNF for cholinergic neurons, and that they may be regulated as such by the neuronal signal, glutamate, through the mediation of group I metabotropic receptors and the PLC pathway.


Subject(s)
Astrocytes/metabolism , Basal Nucleus of Meynert/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Glutamic Acid/metabolism , Receptors, Metabotropic Glutamate/metabolism , Type C Phospholipases/metabolism , Acetylcholinesterase/metabolism , Animals , Animals, Newborn , Astrocytes/drug effects , Basal Nucleus of Meynert/cytology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cells, Cultured , Choline O-Acetyltransferase/metabolism , Cholinergic Fibers/drug effects , Cholinergic Fibers/metabolism , Culture Media, Conditioned/pharmacology , Glutamic Acid/pharmacology , Inositol Phosphates/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology
13.
Dev Dyn ; 227(3): 422-30, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12815629

ABSTRACT

The three-dimensional morphology of the membranous labyrinth of Xenopus laevis is presented from embryonic through late tadpole development (stages 28 to 52, inclusive). This was accomplished by paint-filling the endolymphatic spaces of Xenopus ears at a series of stages, beginning with the embryonic otic vesicle and ending with the complex ear of the late tadpole. At stage 52, the inner ear has expanded approximately 23-fold in its anterior/posterior dimension compared with stage 28 and it is a miniature of the adult form. The paint-filling technique illustrates the dramatic changes required to convert a simple ear vesicle into the elaborate form of the adult, including semicircular canal formation and genesis of vestibular and auditory organs, and it can serve as a basis for phenotype identification in experimentally or genetically manipulated ears.


Subject(s)
Ear, Inner/anatomy & histology , Ear, Inner/embryology , Animals , Metamorphosis, Biological , Models, Anatomic , Otolithic Membrane/embryology , Phenotype , Time Factors , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...