Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28974943

ABSTRACT

The first Fresh Ideas, Foundational Experiments (FIFE): Immunology and Diabetes symposia workshop took place in 2016 and exemplified the active interest of a number of several investigators interested the global rise in the incidence of type 1 diabetes (T1D). This increase does not correlate with genetic drift and indicates that environmental exposures are playing an increasingly significant role. Despite major biomedical and technological advances in diagnosis and treatment, treatments are frequently insufficient as they do not inhibit the progression of the underlying autoimmune response and often fail to prevent life-threatening complications. T1D is the result of autoimmune destruction of the insulin-producing beta cells of the pancreas, and the precise, mechanistic contribution of the immune system to disease pathogenesis and progression remains to be fully characterized. Ultimately, the combinatorial effect of concurrent factors, including beta cell fragility, exogenous stressors, and genetic priming of the innate and adaptive immune system, work together to induce T1D autoimmunity. Thus, T1D is the result of immunological defects and environmental pathogens, requiring the sustained attention of collaborative research teams such as FIFE: I & D with varied perspectives, unified by the universally held goal of finding a sustainable, life-long cure. Herein, the authors provide perspective on various fields in T1D research highlighted by speakers participating in the inaugural FIFE symposium.

2.
EBioMedicine ; 22: 10-17, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28663145

ABSTRACT

Type 1 diabetes (T1D) has been associated with both genetic and environmental factors. Increasing incidence of T1D worldwide is prompting researchers to adopt different approaches to explain the biology of T1D, beyond the presence and activity of autoreactive lymphocytes. In this review, we propose inflammatory pathways as triggers for T1D. Within the scope of those inflammatory pathways and in understanding the pathogenesis of disease, we suggest that viruses, in particular Coxsackieviruses, act by causing a type 1 interferonopathy within the pancreas and the microenvironment of the islet. As such, this connection and common thread represents an exciting platform for the development of new diagnostic, treatment and/or prevention options.


Subject(s)
Coxsackievirus Infections/immunology , Diabetes Mellitus, Type 1/immunology , Interferons/metabolism , Pancreatic Diseases/virology , Animals , Cellular Microenvironment , Immunity, Innate , Islets of Langerhans/immunology , Pancreatic Diseases/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...