Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Pharmacol Transl Sci ; 7(7): 1983-1995, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022364

ABSTRACT

The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.

2.
J Biol Chem ; 294(6): 2193-2207, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30559287

ABSTRACT

The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.


Subject(s)
Cell Membrane/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Calmodulin/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Humans , MAP Kinase Signaling System , Membrane Proteins/metabolism , Membranes, Artificial , Protein Domains , Proto-Oncogene Mas , Proto-Oncogene Proteins c-raf , Signal Transduction , Static Electricity
3.
J Mol Biol ; 426(2): 436-46, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24140750

ABSTRACT

MgtR, a highly hydrophobic peptide expressed in Salmonella enterica serovar Typhimurium, inhibits growth in macrophages through binding to the membrane protein MgtC that has been identified as essential for replication in macrophages. While the Mycobacterium tuberculosis MgtC is highly homologous to its S. Typhi analogue, there does not appear to be an Mtb homologue for MgtR, raising significant pharmacological interest in this system. Here, solid-state NMR and EPR spectroscopy in lipid bilayer preparations were used to demonstrate the formation of a heterodimer between S. Typhi MgtR and the transmembrane helix 4 of Mtb MgtC. Based on the experimental restraints, a structural model of this heterodimer was developed using computational techniques. The result is that MgtR appears to be ideally situated in the membrane to influence the functionality of MgtC.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Protein Interaction Mapping , Protein Multimerization , Salmonella typhimurium/metabolism , Bacterial Proteins/chemistry , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...