Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675236

ABSTRACT

During spaceflights, astronauts face different forms of stress (e.g., socio-environmental and gravity stresses) that impact physiological functions and particularly the immune system. In this context, little is known about the effect of such stress on dendritic cells (DCs). First, we showed that hypergravity, but not chronic ultra-mild stress, a socio-environmental stress, induced a less mature phenotype characterized by a decreased expression of MHCII and co-stimulatory molecules. Next, using the random positioning machine (RPM), we studied the direct effects of simulated microgravity on either splenic DCs or Flt-3L-differentiated bone marrow dendritic cells (BMDCs). Simulated microgravity was found to reduce the BM-conventional DC (cDC) and splenic cDC activation/maturation phenotype. Consistent with this, BMDCs displayed a decreased production of pro-inflammatory cytokines when exposed to microgravity compared to the normogravity condition. The induction of a more immature phenotype in microgravity than in control DCs correlated with an alteration of the NFκB signaling pathway. Since the DC phenotype is closely linked to their function, we studied the effects of microgravity on DCs and found that microgravity impaired their ability to induce naïve CD4 T cell survival, proliferation, and polarization. Thus, a deregulation of DC function is likely to induce immune deregulation, which could explain the reduced efficiency of astronauts' immune response.


Subject(s)
NF-kappa B , Weightlessness , Animals , Mice , NF-kappa B/metabolism , Dendritic Cells , Signal Transduction , Phenotype , Cell Differentiation
2.
Int J Mol Sci ; 20(7)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934839

ABSTRACT

The complement system plays an important role in inflammation, innate and acquired immunity, as well as homeostasis. Despite these functions, the effects of spaceflight conditions on the complement system have not yet been intensively studied. Consequently, we investigated the effects of five types of chronic stressors, similar to those encountered during a stay onboard the International Space Station, on C3 expression in larvae of the urodele amphibian Pleurodeles waltl. We focused on C3 because it is a critical component of this system. These studies were completed by the analysis of adult mice exposed to two models of inflight stressors. Our data show that simulating space radiation, or combining a modification of the circadian rhythm with simulated microgravity, affects the amount of C3 proteins. These results suggest that C3 expression could be modified under real spaceflight conditions, potentially increasing the risk of inflammation and associated tissue damage.


Subject(s)
Complement C3/metabolism , Salamandridae/immunology , Space Flight , Stress, Physiological , Animals , Circadian Rhythm/physiology , Darkness , Disease Models, Animal , Hindlimb Suspension , Mice , Transcription, Genetic , Vibration , Weightlessness Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...