Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Dev Biol ; 55(2): 175-80, 2011.
Article in English | MEDLINE | ID: mdl-21671221

ABSTRACT

Upon prolonged culture, human embryonic stem (hES) cells undergo adaptation, exhibiting decreased population doubling times and increased cloning efficiencies, often associated with karyotypic changes. To test whether culture adaptation influences the patterns of differentiation of hES cells, we compared the expression of genes indicative of distinct embryonic lineages in the embryoid bodies produced from two early passage, karyotypically normal hES cell lines, and two late passage, karyotypically abnormal hES cell lines. One of the abnormal lines was a subline of one of the normal early passage lines. The embryoid bodies from each of the lines showed evidence of extensive differentiation. However, there were differences in the expression of several genes, indicating that the culture adapted hES cells show altered patterns of differentiation compared to karyotypically normal hES cells. The loss of induction of alphafetoprotein in the culture-adapted cells was especially marked, suggesting that they had a reduced capacity to produce extra-embryonic endoderm. These changes may contribute to the growth advantages of genetically variant cells, not only by reflecting an increased tendency to self renewal rather than to differentiate, but also by reducing spontaneous differentiation to derivatives that themselves may produce factors that could induce further differentiation of undifferentiated stem cells.


Subject(s)
Abnormal Karyotype , Cell Differentiation , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Cell Culture Techniques , Cell Line , Cell Lineage , Cell Proliferation , Embryonic Stem Cells/cytology , Humans , Polymerase Chain Reaction
2.
Environ Technol ; 32(1-2): 133-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21473276

ABSTRACT

Sewer systems represent an essential component of modern society. They have a major impact on our quality of life by preventing serious illnesses caused by waterborne diseases, by protecting the environment, and by enabling economic and social development through reducing flood risk. In the UK, systems are normally large and complex and, because of the long lifespan of these assets, their performance and hence their management are influenced by long-term environmental and urban changes. Recent work has focussed on the long-term changes in the hydraulic performance of these systems in response to climate change, e.g. rainfall and economic development. One climate-related driver that has received little attention is temperature, which may in itself have a complex dependence on factors such as rainfall. This study uses Biolog EcoPlates to investigate the effect of different temperatures (4 degrees C, 24 degrees C and 30 degrees C) on the carbon substrate utilization profiles of bacterial communities within sewer sediment deposits. Distinct differences in the metabolic profiles across the different temperatures were observed. Increasing temperature resulted in a shift in biological activity with an increase in the number of different carbon sources that can be utilized. Certain carboxylic and amino acids, however, did not support growth, regardless of temperature. Distinct differences in carbon utilization profiles were also found within sewers that have similar inputs. Therefore, this study has demonstrated that the carbon utilization profile for microbial communities found within sewer sediment deposits is dependent on both temperature and spatial variations.


Subject(s)
Bioreactors/microbiology , Organic Chemicals/metabolism , Sewage/microbiology , Carbon/metabolism , Cluster Analysis , Metabolome , Organic Chemicals/chemistry , Sewage/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...