Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1303198, 2023.
Article in English | MEDLINE | ID: mdl-38186646

ABSTRACT

Background: Aframomum sp. is a genus of plants in the Zingiberaceae family. It includes several species, some of which are used in cosmetics for their various properties, making them useful in skincare products, particularly for anti-aging, moisturizing, and brightening the skin. However, to date, there is no experimental evidence on its natural extracts obtained or modified using microorganisms (bio-fermentation) as an anti-aging agent. Objective: The present study aimed to evaluate the antiaging effect of a Bio-fermented Aframomum angustifolium (BAA) extract on 3D bioprinted skin equivalent. Methods: The consortium of microorganisms contained Komagataeibacter, Gluconobacter, Acetobacter, Saccharomyces, Torulaspora, Brettanomyces, Hanseniaspora, Leuconostoc, Lactobacillus, Schizosaccharomyces. It was developed on a media containing water, sugar, and infused black tea leaves. The seeds of Aframomum angustifolium previously grounded were mixed with the culture medium, and the ferments in growth; this fermentation step lasted 10 days. Then, the medium was collected and filtered (0.22 µm) to obtain the BAA extract. To enhance our comprehension of the impact of BAA extract on skin aging, we developed skin equivalents using bio-printing methods with the presence or absence of keratinocyte stem cells (KSC). These skin equivalents were derived from keratinocytes obtained from both a middle-aged donor, with and without KSC. Moreover, we examined the effects of treating the KSC-depleted skin equivalents with Bio-fermented Aframomum angustifolium (BAA) extract for 5 days. Skin equivalents containing KSC-depleted keratinocytes exhibited histological characteristics typical of aged skin and were compared to skin equivalents derived from young donors. Results: The BAA extract contained specific organic acids such as lactic, gluconic, succinic acid and polyphenols. KSC-depleted skin equivalents that were treated with BAA extract exhibited higher specular reflection, indicating better hydration of the stratum corneum, higher mitotic activity in the epidermis basal layer, improved dermal-epidermal connectivity, and increased rigidity of the dermal-epidermal junction compared to non-treated KSC-depleted equivalents. BAA extract treatments also resulted in changes at the dermis level, with an increase in total collagen and a decrease in global laxity, suggesting that this extract could help maintain youthful-looking skin. Conclusion: In summary, our findings indicated that BAA extract treatments have pleiotropic beneficial effects on skin equivalents and that the bio-fermentation provides new biological activities to this plant.

2.
Anal Bioanal Chem ; 414(19): 5781-5791, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35650447

ABSTRACT

Hyaluronic acid (HA) is a major component of the skin, contributing to tissue hydration and biomechanical properties. As HA content in the skin decreases with age, formulas containing HA are widely used in cosmetics and HA injections in aesthetic procedures to reduce the signs of aging. To prove the beneficial effects of these treatments, efficient quantification of HA levels in the skin is necessary, but remains difficult. A new analytical method has been developed based on matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify HA content in cross sections of human skin explants. A standardized and reproducible chemical entity (3 dimeric motifs or 6-mer) quantifiable by MALDI-MSI was produced by enzymatic hydrolysis using a specific hyaluronidase (H1136) in HA solution. This enzymatic digestion was carried out on skin sections before laser desorption, enabling the detection of HA. Histological coloration allowed us to localize the epidermis and the dermis on skin sections and, by comparison with the MALDI molecular image, to calculate the relative HA concentrations in these tissue areas. Skin explants were treated topically using a formula containing HA or its placebo, and the HA distribution profiles were compared with those obtained from untreated explants. A significant increase in HA was shown in each skin layer following topical application of the formula containing HA versus placebo and untreated samples (average of 126±40% and 92±40%, respectively). The MALDI-MSI technique enabled the quantification and localization of all HA macromolecules (endogenous and exogenous) on skin sections and could be useful for determining the efficacy of new cosmetic products designed to fight the signs of aging.


Subject(s)
Hyaluronic Acid , Skin , Epidermis , Humans , Hyaluronoglucosaminidase , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Bioorg Med Chem Lett ; 17(13): 3754-9, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17448659

ABSTRACT

We report here new chemical series acting as antagonists of melanin-concentrating hormone receptor 1 (MCHR-1). Synthesis and structure-activity relationships are described leading to the identification of compounds with optimized in vitro pharmacological and in vitro ADME profiles. In vivo activity has been demonstrated in animal models of food intake and depression.


Subject(s)
Chemistry, Pharmaceutical/methods , Hydantoins/chemistry , Melanins/chemistry , Receptors, Pituitary Hormone/antagonists & inhibitors , Receptors, Pituitary Hormone/chemistry , Receptors, Somatostatin/antagonists & inhibitors , Animals , Depression/drug therapy , Disease Models, Animal , Drug Design , Feeding Behavior/drug effects , Kinetics , Models, Biological , Models, Chemical , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...